$\qquad$ Date $\qquad$

Finding the rule when given a table.
Step 1: Find the change in $y$.
Step 2: Find the change in $x$.
Step 3: Divide the change in $y$ by the change in $x . \frac{\Delta y}{\Delta x}$ or $\frac{\text { change in } y}{\text { change in } x}$
Step 4: This is the number that the input is being multiplied by. Find what is being added or subtracted if anything. Write the rule. Don't forget the $y$.

## Example:

Steps 1 and 2: Find the change in $y$ and the change in $x$.

|  |  |  |  | , | $\bigcirc$ | This is the change in $x$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input x | 0 | 2 | 4 | 6 | 8 |  |
| Output y | 3 | 7 | 11 | 15 | 19 |  |

Step 3: Divide the change in $y$ by the change in $x$.
$\frac{\text { change in } y}{\text { change } \operatorname{in} x}=\frac{4}{2}=2$
Step 4: This is the number that the input is being multiplied by. Find what is being added or subtracted if anything.

| Input <br> x | $0 \times 2$ | $2 \times 2$ | $4 \times 2$ | $6 \times 2$ | $8 \times 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> y | 3 | 7 | 11 | 15 | 19 |

After multiplying each input by 2 , I noticed that it does not equal the output. I must have to add or subtract something. Choose a set of values (not 0 ). $2 \times 2=4$. To get 7 I must add 3.

Rule: $y=2 x+3$
Check to make sure it works for the other values.
$0 \times 2+3=3$
$4 \times 2+3=11$
$6 \times 2+3=15 \quad 8 \times 2+3=19$

These all work so I found the correct rule.

## Try These:

Steps 1 and 2: Find the change in $y$ and the change in $x$.

| Input x | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Output $y$ | 1 | 4 | 7 | 10 | 13 |

Step 3: Divide the change in $y$ by the change in $x$.
$\frac{\text { change in } y}{\text { change } \text { in } x}=-$
Step 4: This is the number that the input is being multiplied by. Find what is being added or subtracted if anything.

| Input x | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Output y | 1 | 4 | 7 | 10 | 13 |

Rule:

Steps 1 and 2: Find the change in $y$ and the change in $x$.

| Input x | 1 | 3 | 5 | 7 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Outputy | -2 | 4 | 10 | 16 | 22 |

Step 3: Divide the change in $y$ by the change in $x$.
$\frac{\text { change in } y}{\text { change in } x}=-$
Step 4: This is the number that the input is being multiplied by. Find what is being added or subtracted if anything.

| Input x | 1 | 3 | 5 | 7 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Output y | -2 | 4 | 10 | 16 | 22 |

Rule:

