Chapter 7

7.1 Solving Linear Systems by Graphing Check if an ordered pair is a solution to a system Graph and find the point of intersection
7.2 Solve Linear Systems by Substitution Isolate a variable and input into the other equation
7.3-7.4 Solve Linear Systems by Adding Line up the variables and constants Make one the opposite of the other by multiplying if necessary
7.5 Solving Special Types of Linear Systems Infinite Solutions vs. No Solution
7.6 Solve Systems of Linear Inequalities Graph the inequalities and find the overlapping shaded region

7.1 Solve by Graphing

1. Graph each line and find the point of intersection.

Solve the system using substitution
2. $5 x+2 y=9$

$$
x+y=-3
$$

Solve each system using elimination.
3. $7 x+3 y=-12$
$2 x+5 y=38$
4. $3 x+2 y=4$
$2 y=8-5 x$
5. Janet is planning a party. She is having 12 guests and needs a party favor for each guest. Each guest will either receive a bracelet or a yo-yo. Each bracelet costs \$6 and each yo-yo costs \$4. She has \$54 to spend. How many bracelets and how many yo-yos can she buy for \$54?

Variables stand for:

System:

Solve:

Answer:
6. What do you know about a system of equations that has no solution?

7. What do you know about a system of equations that has infinite solutions?

8. What do you know about a system of equations that has one solution?

9. Without solving determine if the system has infinite solutions, no solution or one solution.
$y=-6 x-2$
$y=7 x+13$
$4 x+3 y=27$
$12 x+2 y=-6$
$-21 x+3 y=39$
$4 x-3 y=-27$
10. Graph the system of inequalities.

$$
y-x \geq-3
$$

$$
y<-2 x+1
$$

11. Graph the system of inequalities.
$y \leq 5$
$y>-3$
$-2 y+4 x \geq 10$

Write a system of inequalities for the shaded region.
12.

13.

