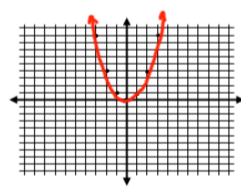
Chapter 10: Quadratic Equations and Functions Study Guide

10.1: Graph $y = ax^2 + c$:

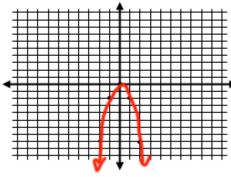
- Be able to graph a quadratic using a table and compare it to the parent function.

Graph the following quadratic equations by making a table. Compare the graph to the parent function.

Ex: $y = x^2$


x	-2	-1	0	1	2
y	4	1	0	1	4

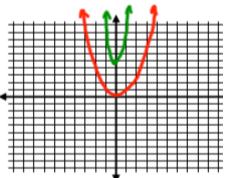
Ex: $y = -2x^2$


x	-2	-1	0	1	2
y	-8	-2	0	-2	-8

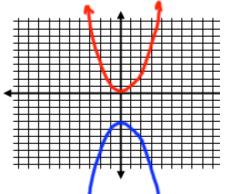
Ex: $y = \frac{1}{3}x^2 - 2$

x	-6	-3	0	3	6
y	10	1	-2	1	10

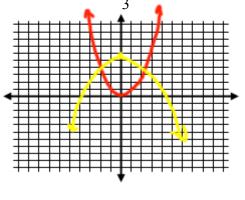
Narrower, has a maximum.



Wider, has a minimum the vertex is down 2.


- Be able to identify characteristics of quadratic equations based on *a* and *c* changing and sketch the resulting parabola.

Sketch the parent function, then sketch the following parabolas based on the equation.


Ex: $y = 3x^2 + 5$

Ex: $y = -x^2 - 4$

Ex: $y = -\frac{2}{3}x^2 + 6$

10.2: Graph $y = ax^2 + bx + c$:

- Be able to find the axis of symmetry and vertex of a parabola.

Find the axis of symmetry and vertex of each quadratic equation.

Ex:
$$y = 2x^2 - 8x + 6$$

Ex:
$$y = -3x^2 + 24x - 22$$

Axis of symm:
$$x = 2$$

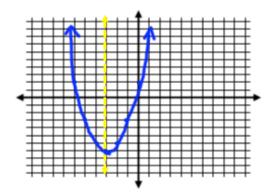
Vertex $(2, -2)$

Axis of symm:
$$x = 4$$

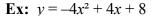
Vertex: $(4, 26)$

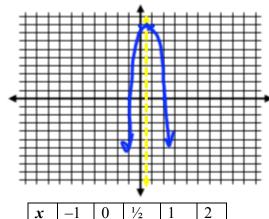
- Be able to tell if a quadratic equation has a maximum or minimum value, then find the max. or min.

Tell whether the function has a *minimum* or *maximum* value. Then find the min. or max. value.


Ex:
$$f(x) = -3x^2 + 12x - 20$$

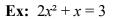
Ex:
$$f(x) = 4x^2 + 32x$$

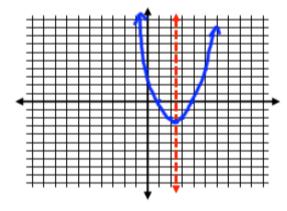

- Be able to graph a quadratic function in the form $y = ax^2 + bx + c$ by finding the axis of symmetry and vertex and making a symmetrical table about the axis.


Graph the quadratic function.

Ex:
$$y = x^2 + 6x + 2$$

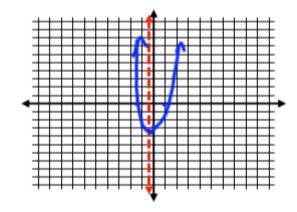
x	-6	-5	-4	-3	-2	-1	0
y	2	-3	-6	-7	-6	-3	2

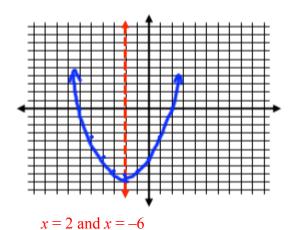

x	-1	0	1/2	1	2
v	0	8	9	8	0

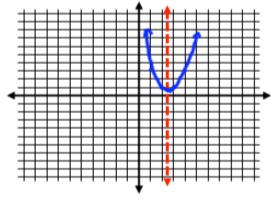

10.3: Solve Quadratic Equations by Graphing:

- Be able to solve an equation by graphing.

Solve the following quadratic equations by graphing.


Ex:
$$x^2 - 5x + 4 = 0$$


$$x = 4$$
 and $x = 1$


Ex:
$$\frac{1}{2}x^2 + 2x = 6$$

$$x = 1 \text{ and } x = -1.5$$

Ex:
$$x^2 - 5x + 7 = 0$$

no solution

- Be able to approximate zeros of a function to the nearest tenth by making a table.

Approximate the zeros of the function to the nearest tenth.

Ex:
$$f(x) = x^2 + 4x - 5$$

Ex:
$$f(x) = -3x^2 + 8x - 2$$

10.4: Use Square Roots to Solve Quadratic Equations:

- Be able to solve a quadratic equation using square roots

Solve the following quadratic equations.

Ex:
$$4x^2 - 400 = 0$$

$$x = \pm 10$$

Ex:
$$3z^2 - 18 = -18$$

$$z = 0$$

Ex:
$$3x^2 - 35 = 45 - 2x^2$$

$$x = \pm 4$$

Ex:
$$11\left(\frac{w-7}{2}\right)^2 - 20 = 101$$

$$w = 13.63$$
 and $w = 0.37$

10.6: Solve Quadratic Equations by the Quadratic Formula:

- Be able to solve quadratic equations by using the quadratic formula

Solve:

Ex:
$$x^2 + 5x - 104 = 0$$

$$x = 8 \text{ and } x = -13$$

Ex:
$$4t^2 - 3t = 5 - 3t^2$$

$$t = 1.09$$
 and $t = -0.66$

Ex:
$$x^2 - 8x = -16$$

$$x = 4$$

Ex:
$$(x + 13)^2 = 25$$

$$x = -8$$
 and $x = -18$

10.7: Interpret the Discriminant:

- Be able to identify the value of the discriminant and use it to determine the number of solutions to a quadratic equation.

Tell whether the equation has two solutions, one solution, or no solution.

Ex:
$$x^2 + x + 1 = 0$$

Ex:
$$-2x^2 + 8x - 4 = 0$$

Discriminant =
$$-3$$
, no solution

Ex:
$$-3g^2 - 4g = \frac{4}{3}$$

Ex:
$$10 = x^2 - 5x$$

Discriminant = 0, one solution

Discriminant = 65, two solutions