
<u>Chapter 10: Quadratic Equations and Functions</u> Study Guide

<u>10.1: Graph $y = ax^2 + c$:</u>

- Be able to graph a quadratic using a table and compare it to the parent function.

Graph the following quadratic equations by making a table. Compare the graph to the parent function.


Ex:
$$y = x^2$$
 Ex: $y = -2x^2$ **Ex:** $y = \frac{1}{3}x^2 - 2$

1

- Be able to identify characteristics of quadratic equations based on *a* and *c* changing and sketch the resulting parabola.

Sketch the parent function, then sketch the following parabolas based on the equation.

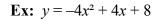
<u>10.2</u>: Graph $y = ax^2 + bx + c$:

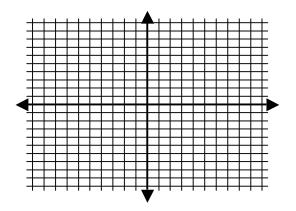
- Be able to find the axis of symmetry and vertex of a parabola.

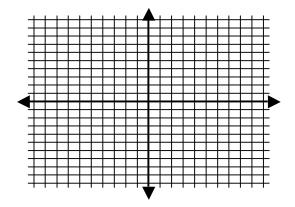
Find the axis of symmetry and vertex of each quadratic equation.

Ex: $y = 2x^2 - 8x + 6$ **Ex:** $y = -3x^2 + 24x - 22$

- Be able to tell if a quadratic equation has a maximum or minimum value, then find the max. or min.

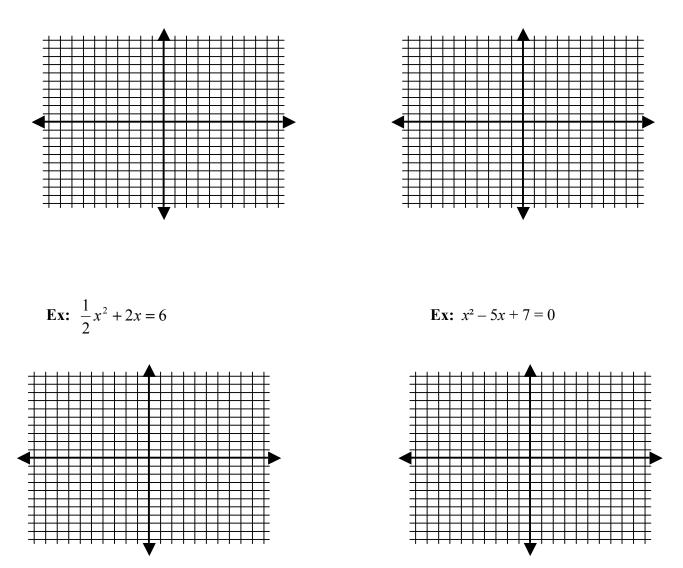

Tell whether the function has a *minimum* or *maximum* value. Then find the min. or max. value.


Ex:
$$f(x) = -3x^2 + 12x - 20$$
 Ex: $f(x) = 4x^2 + 32x$


- Be able to graph a quadratic function in the form $y = ax^2 + bx + c$ by finding the axis of symmetry and vertex and making a symmetrical table about the axis.

Graph the quadratic function.

Ex: $y = x^2 + 6x + 2$


10.3: Solve Quadratic Equations by Graphing:

- Be able to solve an equation by graphing.

Solve the following quadratic equations by graphing.

Ex: $x^2 - 5x + 4 = 0$

Ex: $2x^2 + x = 3$

- Be able to approximate zeros of a function to the nearest tenth by making a table.

Approximate the zeros of the function to the nearest tenth.

Ex:
$$f(x) = x^2 + 4x - 5$$

Ex: $f(x) = -3x^2 + 8x - 2$

10.4: Use Square Roots to Solve Quadratic Equations:

- Be able to solve a quadratic equation using square roots

Solve the following quadratic equations.

Ex:
$$4x^2 - 400 = 0$$
 Ex: $3z^2 - 18 = -18$

Ex: $3x^2 - 35 = 45 - 2x^2$ Ex: $11\left(\frac{w-7}{2}\right)^2 - 20 = 101$

10.6: Solve Quadratic Equations by the Quadratic Formula:

- Be able to solve quadratic equations by using the quadratic formula

Solve:

Ex: $x^2 + 5x - 104 = 0$

Ex: $4t^2 - 3t = 5 - 3t^2$

Ex: $x^2 - 8x = -16$

Ex: $(x + 13)^2 = 25$

<u>10.7:</u> Interpret the Discriminant:

- Be able to identify the value of the discriminant and use it to determine the number of solutions to a quadratic equation.

Tell whether the equation has two solutions, one solution, or no solution.

Ex: $x^2 + x + 1 = 0$

Ex: $-2x^2 + 8x - 4 = 0$

Ex:
$$-3g^2 - 4g = \frac{4}{3}$$

Ex: $10 = x^2 - 5x$