\qquad
\qquad
9.6 Practice 2

Factor each trinomial, if possible. If the trinomial cannot be factored using integers, write prime.

1. $2 b^{2}+10 b+12$
2. $3 g^{2}+8 g+4$
3. $4 x^{2}+4 x-3$
4. $8 b^{2}-5 b-10$
5. $6 m^{2}+7 m-3$
6. $10 d^{2}+17 d-20$
7. $6 a^{2}-17 a+12$
8. $8 w^{2}-18 w+9$
9. $10 x^{2}-9 x+6$
10. $15 n^{2}-n-28$
11. $10 x^{2}+21 x-10$
12. $9 r^{2}+15 r+6$
13. $12 y^{2}-4 y-5$
14. $14 k^{2}-9 k-18$
15. $8 z^{2}+20 z-48$
16. $12 q^{2}+34 q-28$
17. $18 h^{2}+15 h-18$
18. $12 p^{2}-22 p-20$

Solve each equation. Check your solutions.

19. $3 h^{2}+2 h-16=0$
20. $15 n^{2}-n=2$
21. $8 q^{2}-10 q+3=0$
22. $6 b^{2}-5 b=4$
23. $10 c^{2}-21 c=-4 c+6$
24. $10 g^{2}+10=29 g$
25. $6 y^{2}=-7 y-2$
26. $9 z^{2}=-6 z+15$
27. $12 k^{2}+15 k=16 k+20$
28. $12 x^{2}-1=-x$
29. $8 a^{2}-16 a=6 a-12$
30. $18 a^{2}+10 a=-11 a+4$
31. DIVING Lauren dove into a swimming pool from a 15 -foot-high diving board with an initial upward velocity of 8 feet per second. Find the time t in seconds it took Lauren to enter the water. Use the model for vertical motion given by the equation $h=-16 t^{2}+v t+s$, where h is height in feet, t is time in seconds, v is the initial upward velocity in feet per second, and s is the initial height in feet. (Hint: Let $h=0$ represent the surface of the pool.)
32. BASEBALL Brad tossed a baseball in the air from a height of 6 feet with an initial upward velocity of 14 feet per second. Enrique caught the ball on its way down at a point of 4 feet above the ground. How long was the ball in the air before Enrique caught it? Use the model of vertical motion from Exercise 31.
