Name:_____ Notes Algebra Section 9.5 Pages 583-589

Goal: "You will factor trinomials of the form $x^2 + bx + c$ "

Factoring Trinomials:

Factoring a trinomial is essentially <u>Un-Foiling</u>.

Guess and Check:

Factor $x^2 + 11x + 18$	Factor $x^2 + 8x + 12$
(x + 2)(x + 9)	(x + 6)(x + 2)

Factor $x^2 + 5x + 4$

You are looking for <u>factors</u> of 4 that <u>add</u> to be 5.

4	х	1 = 4		
4	+	1 = 5		
so	(x	+ 4) (<i>x</i>	$(+ 1) = x^2 + 5x + 4$	$x^2 + bx + c = (x + p)(x + c)$

Factor each trinomial: Ex: $x^2 + 3x + 2$	Ex: <i>a</i> ² + 7 <i>a</i> + 10
(x + 1)(x + 2)	(a + 5)(a + 2)
Ex: $t^2 + 9t + 14$	Ex: $x^2 + 13x + 12$
(t + 7)(t + 2)	(x + 12)(x + 1)
Ex: $t^2 + t - 20$	Ex: $n^2 - 6n + 8$

(t+5)(t-4) (n-4)(n-2)

+q)

Date:__

Ex: $x^2 - 4x + 3$	Ex: $n^2 - 5n + 6$
(x-3)(x-1)	(n-3)(n-2)
Ex: $y^2 + 2y - 15$	Ex: $w^2 + 6w - 16$
(y + 5)(y - 3)	(w + 8)(w - 2)
Solve: Ex: $x^2 + 3x - 18 = 0$	Ex: $s^2 - 2s = 24$
(x+6)(x-3) = 0 x = -6 or x = 3	$s^{2} - 2s - 24 = 0$ (s - 6)(s + 4) = 0 s = 6 or s = -4

Ex: $x^2 - 3x = 28$

 $x^{2} - 3x - 28 = 0$ (x - 7)(x + 4) = 0 x = 7 or x = -4

Factor completely.

Ex: $-x^2 - 6x - 5$	Ex: $-x^2 - 4x - 3$
$-1(x^2 + 6x + 5)$	*Make $a = 1$ by factoring out a GCF of -1 $-1(x^2 + 4x + 3)$
-1(x+2)(x+3)	-1(x+3)(x+1)
Ex: $-x^2 - 3x + 70$	Ex: $-x^2 + 17x - 72$
-1(x - 7)(x + 10)	-1(x - 9)(x - 8)

Ex: $2a^2 + 12a + 16$ E	x: $3x^2 + 24x - 144$
---------------------------------------	------------------------------

$2(a^2 + 6a + 8) 2(a + 4)(a + 2)$	$3(x^2 + 8x - 48) 3(x - 12)(x - 4)$
Ex: $4x^2 - 40x + 84$	Ex: $-2x^2 - 10x - 12$
$4(x^2 - 10x + 21) 4(x - 3)(x - 7)$	$\begin{array}{l} -2(x^2+5x+6) \\ -2(x+3)(x+2) \end{array}$

Ex: You are making banners to hang during school spirit week. Each banner requires 16.5 square feet of felt and will be cut as shown. Find the width of each banner.

$$2(4w + \frac{1}{2}w^{2}) = 33$$

$$8w + w^{2} = 33$$

$$w^{2} + 8w - 33 = 0$$

$$(w + 11)(w - 3) = 0$$

$$w = -11 \text{ or } w = 3$$

$$w = 3 \text{ since it can't be negative}$$

Ex: You are designing a team flag. The shaded region will have the team name. The entire flag requires 117 square inches of fabric. Find the width.

w(w + 4) = 117 $w^{2} + 4w - 117 = 0$ (w + 13)(w - 9) = 0w = 9 (can't be -13)