Name:_____ Notes Algebra Section 9.4 Pages 575-580

Goal: "You will solve polynomial equations"

Vocabulary:

Roots: The solutions of a zero-product property.

Zero-product property: If ab=0, then either *a* or *b* has to =0.

Solve using the zero-product property:

Ex: $(x+2)(x+4) = 0$	Either the first set of parentheses or the second set of parentheses has to =0 For the first set of parentheses to =0 then x has to = -2 For the second set of parentheses to =0 then x has to = -4
So, $x = -2$ or $x = -4$	

Solve:

x = 5 x = 1

Ex: $(x-5)(x-1) = 0$	Ex: $(x+3)(x-5) = 0$

Factor by finding the Greatest Common Factor:

Ex: $12x + 42y$ 6(2x + 7y)	What do both terms have in common that y Look for the greatest factor they have in co When you factor by using the GCF you are Which means you could check your answe	ommon. 6 essentially: Un-Distributing
Ex: $4x^4 + 24x^3$	Ex: $14m + 35n$	Ex: $8x + 12y$
$4x^3(x+6)$	7(2m + 5n)	4(2x+3y)
Ex: $14y^2 + 21y$	Ex: $6x^2y + 9xy^2$	Ex: $4t^2 - 2t$
7y(2y + 3)	3xy(2x+3y)	2t(2t-1)

x = -3 x = 5

Solve by factoring first:

Ex:
$$2x^2 + 8x = 0$$
Ex: $3x^2 + 18x = 0$ $2x(x + 4) = 0$
 $2x = 0 \text{ or } x + 4 = 0$
 $x = 0 \text{ or } x = -4$ $3x(x + 6) = 0$
 $3x = 0 \text{ or } x + 6 = 0$
 $x = 0 \text{ or } x = -6$ Ex: $a^2 + 5a = 0$ Ex: $3s^2 - 9s = 0$ $a(a + 5) = 0$
 $a = 0 \text{ or } a + 5 = 0$
 $a = 0 \text{ or } a = -5$ $3s(s - 3) = 0$
 $3s = 0 \text{ or } s - 3 = 0$
 $s = 0 \text{ or } s = 3$

Solve by factoring:

Ex: $6n^2 = 15n$	Ex: $4x^2 = 2x$	Ex: $4s^2 = 14s$
$6n^2 - 15n = 0$	$x = 0 \text{ or } x = \frac{1}{2}$	$s = 0 \text{ or } s = \frac{7}{2}$
3n(2n-5)=0		
$n = 0 \text{ or } n = \frac{5}{2}$		

Vertical Motion Model:

h = Height (feet)

t = time (seconds)

v = Initial Velocity (feet/second)

s = initial height (Feet)

$$h = -16t^2 + vt + s$$

Ex: A startled armadillo jumps straight into the air with an initial velocity of 14 ft/s. After how many seconds does it land back on the ground? h = -162 with a

$h = -16t^2 + vt + s$	
$h = -16t^2 + 14t$	(s = 0 since he starts on the ground)
h = -2t(8t - 7)	Factor using GCF
0 = -2t(8t - 7)	Replace h with 0 since that would be his height when he reaches the ground again
$t = 0 \text{ or } t = \frac{7}{8}$	t = 0 stands for when the armadillo first jumps, so he returns to the
Ŭ	ground after seven-eighths of a second.

Ex: A dolphin jumped out of the water with an initial velocity of 32 ft/s. How many seconds does it take for the dolphin to re-enter the water?

$h = -16t^2 + 32t$	
t = 0 or t = 2	2 seconds to return back to the water.