\qquad
Notes
Algebra Section 9.4
Pages 575-580
Goal: "You will solve polynomial equations"

Vocabulary:

Roots: The solutions of a zero-product property.
Zero-product property: If $a b=0$, then either a or b has to $=0$.

Solve using the zero-product property:

Ex: $(x+2)(x+4)=0 \quad$ Either the first set of parentheses or the second set of parentheses has to $=0$ For the first set of parentheses to $=0$ then x has to $=-2$
For the second set of parentheses to $=0$ then x has to $=-4$
So, $x=-2$ or $x=-4$

Solve:

Ex: $(x-5)(x-1)=0$
Ex: $(x+3)(x-5)=0$
$x=5 \quad x=1$

$$
x=-3 \quad x=5
$$

Factor by finding the Greatest Common Factor:

Ex: $12 x+42 y$
$6(2 x+7 y)$

What do both terms have in common that you can divide by?
Look for the greatest factor they have in common. 6
When you factor by using the GCF you are essentially: Un-Distributing
Which means you could check your answer by: Distributing

Ex: $4 x^{4}+24 x^{3}$
$4 x^{3}(x+6)$

Ex: $14 y^{2}+21 y$
$7 y(2 y+3)$

Ex: $14 m+35 n$
$7(2 m+5 n)$

Ex: $6 x^{2} y+9 x y^{2}$
$3 x y(2 x+3 y)$
$\mathbf{E x}: 4 t^{2}-2 t$
$2 t(2 t-1)$

> Ex: $2 x^{2}+8 x=0$
> $2 x(x+4)=0$
> $2 x=0$ or $x+4=0$
> $x=0$ or $x=-4$

Ex: $a^{2}+5 a=0$

$$
\begin{aligned}
& a(a+5)=0 \\
& a=0 \text { or } a+5=0 \\
& a=0 \text { or } \quad a=-5
\end{aligned}
$$

Ex: $3 x^{2}+18 x=0$

$$
\left.\begin{array}{rlrl}
3 x(x+6) & =0 \\
3 x & =0 & \text { or } & x+6
\end{array}\right)=0 .
$$

Ex: $3 s^{2}-9 s=0$

$$
\begin{aligned}
& 3 s(s-3)=0 \\
& 3 s=0 \quad \text { or } \quad s-3=0 \\
& s=0 \quad \text { or } \quad s=3
\end{aligned}
$$

Solve by factoring:

Ex: $6 n^{2}=15 n$
$6 n^{2}-15 n=0$
$3 n(2 n-5)=0$
$n=0$ or $n=\frac{5}{2}$

Vertical Motion Model:

$h=$ Height (feet) $\quad t=$ time (seconds)
$v=$ Initial Velocity (feet/second) $\quad s=$ initial height (Feet)

$$
h=-16 t^{2}+v t+s
$$

Ex: A startled armadillo jumps straight into the air with an initial velocity of $14 \mathrm{ft} / \mathrm{s}$. After how many seconds does it land back on the ground?

$$
\begin{array}{ll}
h=-16 t^{2}+v t+s & \\
h=-16 t^{2}+14 t & (s=0 \text { since he starts on the ground) } \\
h=-2 t(8 t-7) & \text { Factor using GCF } \\
0=-2 t(8 t-7) & \begin{array}{l}
\text { Replace } h \text { with } 0 \text { since that would be his height when he reaches } \\
\text { the ground again }
\end{array} \\
t=0 \text { or } t=\frac{7}{8} & \begin{array}{l}
t=0 \text { stands for when the armadillo first jumps, so he returns to the } \\
\text { ground after seven-eighths of a second. }
\end{array}
\end{array}
$$

Ex: A dolphin jumped out of the water with an initial velocity of $32 \mathrm{ft} / \mathrm{s}$. How many seconds does it take for the dolphin to re-enter the water?

$$
\begin{aligned}
& h=-16 t^{2}+32 t \\
& t=0 \text { or } t=2
\end{aligned} \quad 2 \text { seconds to return back to the water. }
$$

