\qquad
Notes
Algebra Section 9.4
Pages 575-580
Goal: "You will solve polynomial equations"

Vocabulary:

Roots: The \qquad of a zero-product property.

Zero-product property: If \qquad $=0$, then either \qquad or \qquad has to $=0$.

Solve using the zero-product property:

Ex: $(x+2)(x+4)=0 \quad$ Either the first set of parentheses or the second set of parentheses has to $=0$ For the first set of parentheses to $=0$ then x has to $=$ \qquad For the second set of parentheses to $=0$ then x has to $=$ \qquad
So, $x=$ or $x=$

Solve:

Ex: $(x-5)(x-1)=0$
Ex: $(x+3)(x-5)=0$

Factor by finding the Greatest Common Factor:

Ex: $12 x+42 y$
What do both terms have in common that you can divide by?
Look for the greatest factor they have in common.
When you factor by using the GCF you are essentially:
Which means you could check your answer by:

Ex: $4 x^{4}+24 x^{3}$
Ex: $14 m+35 n$
Ex: $8 x+12 y$

Ex: $14 y^{2}+21 y$
Ex: $6 x^{2} y+9 x y^{2}$
Ex: $4 t^{2}-2 t$

Ex: $2 x^{2}+8 x=0$
Ex: $3 x^{2}+18 x=0$

Ex: $a^{2}+5 a=0$
Ex: $3 s^{2}-9 s=0$

Solve by factoring:

Ex: $6 n^{2}=15 n$
Ex: $4 x^{2}=2 x$
Ex: $4 s^{2}=14 s$

Vertical Motion Model:

$h=$	$t=$
$v=$	$s=$

Ex: A startled armadillo jumps straight into the air with an initial velocity of $14 \mathrm{ft} / \mathrm{s}$. After how many seconds does it land back on the ground?

Ex: A dolphin jumped out of the water with an initial velocity of $32 \mathrm{ft} / \mathrm{s}$. How many seconds does it take for the dolphin to re-enter the water?

