Name:_____ Notes Algebra Section 9.1 Pages 554-559

Goal: "You will add and subtract polynomials"

Vocabulary

Monomial: a <u>number</u>, <u>variable</u>, or the <u>product</u> of a number and one or more variable with <u>whole</u> <u>number</u>

exponents.

Degree of a Monomial: The <u>sum</u> of the <u>exponents</u> of the variables in the <u>monomial</u>.

Monomial	Degree	Not a Mono	omial Reason
10	0	5 + <i>x</i>	It has +
3 <i>x</i>	1	$\frac{2}{n}$	Variable in demonminator- negative exponent
$\frac{1}{2}ab^2$	1+2=3	4 ^{<i>a</i>}	Variable in exponent
$-1.8m^{5}$	5	x ⁻¹	Negative exponent

Ex: Monomial? Yes or no? Why? Why not? If yes, what is the degree?

a. 17	b. $\frac{x^3}{2}$	c. $\frac{5}{x}$	d. $4x^2y^5z$
yes a number degree=0	yes product degree=3	no negative exponent	yes product degree=8
e. 9 + <i>x</i>	f. 7 ^b	g. y^{-3}	h. $\frac{3}{4}ab$
no sum	no variable as exponent	no negative exponent	yes product degree=2

Polynomial: a monomial or a sum of monomials. Each is called a term.

Binomial: A polynomial with two terms.

Trinomial: A polynomial with three terms.

Degree of a Polynomial: The greatest degree of its terms.

Parts of a polynomial: Note- the polynomial is written so that the exponents of a variable decrease from left to

right. degree constant leading coefficient $2x^3 + x^2 - 5x + 12$

Rewrite a polynomial:

Rewrite the polynomial so that the exponents of a variable decrease form left to right. Then state the leading coefficient, degree, and constant.

 $15x - x^3 + 3$ $-x^3 + 15x + 3$

When more than one variable is used, polynomials should be written in descending order, based on the variable that comes first alphabetically.

$$4ab^{3} + 2a^{3}b - 5a^{2}b^{4}$$
$$2a^{3}b - 5a^{2}b^{4} + 4ab^{3}$$

Rewrite the following polynomials in descending order, based on the variable that comes first alphabetically.

- **1.** $15x x^3 + 3$ **2.** $-xy + x^4 y^2$ **3.** $-3ac^4 + a^2c^2 a^3c$ $-x^3 + 15x + 3$ $x^4y^2 xy$ $-a^3c + a^2c^2 3ac^4$
- 4. $3b^3 4b^4 + b^2$ 5. $7x^2y + 4xy^3 - 3x^3y^2$ $-4b^4 + 3b^3 + b^2$ $-3x^3y^2 + 7x^2y + 4xy^3$

Ex: Classify each polynomial as a monomial, binomial, trinomial or polynomial, then find the degree of each.

1. $2 + 4x - 7x^2$	2. $5xy^2$	3. $6a^2c + 5ac^5$
Trinomial	Monomial	Binomial
Degree=2	Degree=3	Degree=6
4. $5x^3 - 4xy^2 - 2x + 6$	5. $7b^{3}c + 4bc^{4}$	6. $6n^4 + 3n + 7x^8 - 4n^3$
Polynomial	Binomial	Polynomial
Degree=3	Degree=5	Degree=8

<u>Adding Polynomials</u> – Same as adding like terms.

- **Ex:** $(2x^3 5x^2 + x) + (2x^2 + x^3 1)$ **Ex:** $(3x^2 + x 6) + (x^2 + 4x + 10)$
 - $3x^3 3x^2 + x 1 \qquad \qquad 4x^2 + 5x + 4$

Ex:
$$(-2x^2 + 3x - x^3) + (3x^2 + x^3 - 12)$$

 $x^2 + 3x - 12$
Ex: $(4x^3 + 2x^2 - 4) + (x^3 - 3x^2 + x)$
 $5x^3 - x^2 + x - 4$

<u>Subtracting Polynomials</u> – Distribute the negative first.

- **Ex:** $(4n^2+5)-(-2n^2+2n-4)$ **Ex:** $(4x^2-3x+5)-(3x^2-x-8)$
 - $6n^2 2n + 9$ $x^2 2x + 13$

Ex:
$$(2c^2 - 8) - (3c^2 - 4c + 1)$$
 Ex: $(5y^2 + 2y - 4) - (-y^2 + 4y - 3)$

 $-c^2 + 4c - 9$ $6y^2 - 2y - 1$

CHALLENGE

$$(4x^{3}y + 3x^{2} y^{2} - 5xy^{3} + 6x - 2y) + (7y - 4x + 6x^{2}y^{2} - x^{3}y + 2xy^{3})$$

$$3x^{3}y + 9x^{2}y^{2} - 3xy^{3} + 2x + 5y$$