Name: \qquad
Notes
Algebra Section 9.1
Pages 554-559
Goal: "You will add and subtract polynomials"

Vocabulary

Monomial: a number, variable, or the product of a number and one or more variable with whole number exponents.

Degree of a Monomial: The sum of the exponents of the variables in the monomial.

Monomial	Degree
10	0
$3 x$	1
$\frac{1}{2} a b^{2}$	$1+2=3$
$-1.8 m^{5}$	5

Not a Monomial	Reason
$5+x$	It has +
$\frac{2}{n}$	Variable in demonminator- negative exponent
4^{a}	Variable in exponent
x^{-1}	Negative exponent

Ex: Monomial? Yes or no? Why? Why not? If yes, what is the degree?
a. 17
b. $\frac{x^{3}}{2}$
yes
product
a number
degree $=0$
degree=3
c. $\frac{5}{x}$
no
negative exponent
g. y^{-3}
no
negative exponent
d. $4 x^{2} y^{5} z$
yes
product
degree=8
h. $\frac{3}{4} a b$
yes product degree=2

Polynomial: a monomial or a sum of monomials. Each is called a term.
Binomial: A polynomial with two terms.
Trinomial: A polynomial with three terms.
Degree of a Polynomial: The greatest degree of its terms.
Parts of a polynomial: Note- the polynomial is written so that the exponents of a variable decrease from left to right.

Rewrite a polynomial:

Rewrite the polynomial so that the exponents of a variable decrease form left to right. Then state the leading coefficient, degree, and constant.

$$
\begin{gathered}
15 x-x^{3}+3 \\
-x^{3}+15 x+3
\end{gathered}
$$

When more than one variable is used, polynomials should be written in descending order, based on the variable that comes first alphabetically.

$$
\begin{aligned}
& 4 a b^{3}+2 a^{3} b-5 a^{2} b^{4} \\
& 2 a^{3} b-5 a^{2} b^{4}+4 a b^{3}
\end{aligned}
$$

Rewrite the following polynomials in descending order, based on the variable that comes first alphabetically.

1. $15 x-x^{3}+3$
2. $-x y+x^{4} y^{2}$
3. $-3 a c^{4}+a^{2} c^{2}-a^{3} c$
$-x^{3}+15 x+3$
$x^{4} y^{2}-x y$
$-a^{3} c+a^{2} c^{2}-3 a c^{4}$
4. $3 b^{3}-4 b^{4}+b^{2}$
$-4 b^{4}+3 b^{3}+b^{2}$
5. $7 x^{2} y+4 x y^{3}-3 x^{3} y^{2}$
$-3 x^{3} y^{2}+7 x^{2} y+4 x y^{3}$

Ex: Classify each polynomial as a monomial, binomial, trinomial or polynomial, then find the degree of each.

1. $2+4 x-7 x^{2}$

Trinomial
Degree=2
4. $5 x^{3}-4 x y^{2}-2 x+6$

Polynomial
Degree=3
2. $5 x y^{2}$

Monomial
Degree=3
5. $7 b^{3} c+4 b c^{4}$

Binomial
Degree=5
3. $6 a^{2} c+5 a c^{5}$

Binomial
Degree=6
6. $6 n^{4}+3 n+7 x^{8}-4 n^{3}$

Polynomial
Degree=8

Adding Polynomials - Same as adding like terms.

Ex: $\left(2 x^{3}-5 x^{2}+x\right)+\left(2 x^{2}+x^{3}-1\right)$

$$
3 x^{3}-3 x^{2}+x-1
$$

Ex: $\left(-2 x^{2}+3 x-x^{3}\right)+\left(3 x^{2}+x^{3}-12\right)$

$$
x^{2}+3 x-12
$$

Subtracting Polynomials - Distribute the negative first.
Ex: $\left(4 n^{2}+5\right)-\left(-2 n^{2}+2 n-4\right)$

$$
6 n^{2}-2 n+9
$$

Ex: $\left(2 c^{2}-8\right)-\left(3 c^{2}-4 c+1\right)$

$$
-c^{2}+4 c-9
$$

$$
\begin{gathered}
\text { Ex: }\left(4 x^{3}+2 x^{2}-4\right)+\left(x^{3}-3 x^{2}+x\right) \\
5 x^{3}-x^{2}+x-4
\end{gathered}
$$

$$
\begin{gathered}
\text { Ex: }\left(3 x^{2}+x-6\right)+\left(x^{2}+4 x+10\right) \\
4 x^{2}+5 x+4
\end{gathered}
$$

$$
\text { Ex: }\left(4 x^{2}-3 x+5\right)-\left(3 x^{2}-x-8\right)
$$

$$
x^{2}-2 x+13
$$

Ex: $\left(5 y^{2}+2 y-4\right)-\left(-y^{2}+4 y-3\right)$

$$
6 y^{2}-2 y-1
$$

CHALLENGE

$\left(4 x^{3} y+3 x^{2} y^{2}-5 x y^{3}+6 x-2 y\right)+\left(7 y-4 x+6 x^{2} y^{2}-x^{3} y+2 x y^{3}\right)$

$$
3 x^{3} y+9 x^{2} y^{2}-3 x y^{3}+2 x+5 y
$$

