Name: \qquad
Notes
Algebra Section 9.1
Pages 554-559
Goal: "You will add and subtract polynomials"

Vocabulary

Monomial: a \qquad , \qquad , or the \qquad of
a number and one or more variable with \qquad
\qquad
\qquad .

Degree of a Monomial: The \qquad of the \qquad of the variables in the
\qquad _.

Monomial	Degree
10	
$3 x$	
$\frac{1}{2} a b^{2}$	
$-1.8 m^{5}$	

Not a Monomial	Reason
$5+x$	
$\frac{2}{n}$	
4^{a}	
x^{-1}	

Ex: Monomial? Yes or no? Why? Why not? If yes, what is the degree?
a. 17
b. $\frac{x^{3}}{2}$
c. $\frac{5}{x}$
d. $4 x^{2} y^{5} z$
e. $9+x$
f. $7^{\boldsymbol{b}}$
g. y^{-3}
h. $\frac{3}{4} a b$
\qquad or a sum of \qquad . Each is called a

Binomial: A polynomial with \qquad _.

Trinomial: A polynomial with \qquad .

Degree of a Polynomial: The \qquad of its \qquad .

Parts of a polynomial: Note- the polynomial is written so that the exponents of a variable decrease from left to right.

Rewrite a polynomial:

Rewrite the polynomial so that the exponents of a variable decrease form left to right. Then state the leading coefficient, degree, and constant.

$$
15 x-x^{3}+3
$$

When more than one variable is used, polynomials should be written in descending order, based on the variable that comes first alphabetically.

$$
4 a b^{3}+2 a^{3} b-5 a^{2} b^{4}
$$

Rewrite the following polynomials in descending order, based on the variable that comes first alphabetically.

1. $15 x-x^{3}+3$
2. $-x y+x^{4} y^{2}$
3. $-3 a c^{4}+a^{2} c^{2}-a^{3} c$
4. $3 b^{3}-4 b^{4}+b^{2}$
5. $7 x^{2} y+4 x y^{3}-3 x^{3} y^{2}$

Ex: Classify each polynomial as a monomial, binomial, trinomial or polynomial, then find the degree of each.

1. $2+4 x-7 x^{2}$
2. $5 x y^{2}$
3. $6 a^{2} c+5 a c^{5}$
4. $5 x^{3}-4 x y^{2}-2 x+6$
5. $7 b^{3} c+4 b c^{4}$
6. $6 n^{4}+3 n+7 x^{8}-4 n^{3}$

Adding Polynomials - Same as adding like terms.

Ex: $\left(2 x^{3}-5 x^{2}+x\right)+\left(2 x^{2}+x^{3}-1\right)$
Ex: $\left(3 x^{2}+x-6\right)+\left(x^{2}+4 x+10\right)$

Ex: $\left(-2 x^{2}+3 x-x^{3}\right)+\left(3 x^{2}+x^{3}-12\right)$ Ex: $\left(4 x^{3}+2 x^{2}-4\right)+\left(x^{3}-3 x^{2}+x\right)$

Subtracting Polynomials - Distribute the negative first.
Ex: $\left(4 n^{2}+5\right)-\left(-2 n^{2}+2 n-4\right)$
Ex: $\left(4 x^{2}-3 x+5\right)-\left(3 x^{2}-x-8\right)$

Ex: $\left(2 c^{2}-8\right)-\left(3 c^{2}-4 c+1\right)$
Ex: $\left(5 y^{2}+2 y-4\right)-\left(-y^{2}+4 y-3\right)$

CHALLENGE

$\left(4 x^{3} y+3 x^{2} y^{2}-5 x y^{3}+6 x-2 y\right)+\left(7 y-4 x+6 x^{2} y^{2}-x^{3} y+2 x y^{3}\right)$

