Find the product.

1.
$$-8v^3(2v^4-5v^2+3)$$

$$(9m^3+1)(4m^2-1)$$

7.
$$(3p^4-5)(2p^2+4)$$

10.
$$xy(x^2 + 2y)$$

13.
$$(x-y)(5x+6y)$$

13.
$$(x-y)(5x+6y)$$

2.
$$(b+3)(3b^2-2b+1)$$

5.
$$(2x^2 + 5x - 2)(x + 3)$$

8.
$$(-8r^3+2)(6r^2-1)$$

11.
$$-3x(2xy + 5y)$$

14.
$$(xy^2 + 70)(3x + 2y)$$

3.
$$(6w-3)(4-3w)$$

1.
$$-8y^3(2y^4 - 5y^2 + 3)$$
 2. $(b+3)(3b^2 - 2b + 1)$ **3.** $(6w-3)(4-3w)$ **4.** $(9m^3 + 1)(4m^2 - 1)$ **5.** $(2x^2 + 5x - 2)(x + 3)$ **6.** $(8n^2 - 1)(3n^2 - 4n + 5)$ **7.** $(3p^4 - 5)(2p^2 + 4)$ **8.** $(-8r^3 + 2)(6r^2 - 1)$ **9.** $(-5z^2 - 3)(-2z^2 + 9)$

9.
$$(-5z^2-3)(-2z^2+9)$$

11.
$$-3x(2xy + 5y)$$
 12. $y^2(x^2y + y^2x)$

13.
$$(x - y)(5x + 6y)$$
 14. $(xy^2 + 70)(3x + 2y)$ **15.** $(x^2 - 4xy + y^2)(5xy)$

Simplify the expression.

16.
$$(7n+1)(3n+5) + (4n-2)(3n+1)$$

16.
$$(7n+1)(3n+5) + (4n-2)(3n+1)$$
 17. $5w^2(3w^3-2w+1) + w^4(w^2-2w+3)$

Write a polynomial for the area of the shaded region.

18.

20. Car Production During the period 1995–2002, the number of cars C (in thousands) produced in the U.S. and the average price P (in dollars) spent on one of these cars can be modeled by

C = -198.02t + 6320.49 and $P = 1.67t^4 - 22.28t^3 + 44.84t^2 + 531.16t + 16,860$ where t is the number of years since 1995.

- **a.** Write an equation that models the total amount spent on new cars in the U.S. by consumers as a function of the number of years since 1995.
- **b.** How much money was spent in the U.S. on new cars by consumers in 1995?
- 21. Sporting Goods Equipment During the period 1990–2002, the amount of money E (in millions of dollars) spent on sporting goods equipment in the U.S. and the percent P (in decimal form) of this amount that is spent on exercise equipment can be modeled by

$$E = -5.56t^4 + 149.93t^3 - 1314.65t^2 + 4396.75t + 14,439.09$$

and $P = -0.00002t^4 - 0.0005t^3 + 0.0028t^2 + 0.001t + 0.126$
where t is the number of years since 1990.

- **a.** Find the values of E and P for t = 0. What does the product $E \cdot P$ mean for t = 0 in the context of this problem?
- **b.** Write an equation that models the amount spent on exercise equipment as a function of the number of years since 1990.
- **c.** How much money was spent in the U.S. on exercise equipment in 1990?