Lrsson Practice B
 9.1 For use with pages 554-560

Write the polynomial so that the exponents decrease from left to right. Identify the degree and leading coefficient of the polynomial.

1. $4 n^{5}$
2. $4 x-2 x^{2}+3$
3. $6 y^{3}-2 y^{2}+4 y^{4}-5$

Tell whether the expression is a polynomial. If it is a polynomial, find its degree and classify it by the number of its terms. Otherwise, tell why it is not a polynomial.
4. 10^{x}
5. $-6 n^{2}-n^{3}+4$
6. $w^{-3}+5$

Find the sum or difference.

7. $\left(3 z^{2}+z-4\right)+\left(2 z^{2}+2 z-3\right)$
8. $\left(8 c^{2}-4 c+1\right)+\left(-3 c^{2}+c+5\right)$
9. $\left(2 x^{2}+5 x-1\right)+\left(x^{2}-5 x+7\right)$
10. $\left(10 b^{2}-3 b+2\right)-\left(4 b^{2}+5 b+1\right)$
11. $\left(-4 m^{2}+3 m-1\right)-(m+2)$
12. $(3 m+4)-\left(2 m^{2}-6 m+5\right)$

Write a polynomial that represents the perimeter of the figure.

13.

14.

15. Floor Plan The first floor of a home has the floor plan shown. Find the area of the first floor.

16. Profit For 1995 through 2005, the revenue R (in dollars) and the cost C (in dollars) of producing a product can be modeled by
$R=\frac{1}{4} t^{2}+\frac{21}{4} t+400 \quad$ and $\quad C=\frac{1}{12} t^{2}+\frac{13}{4} t+200$
where t is the number of years since 1995. Write an equation for the profit earned from 1995 to 2005. (Hint: Profit $=$ Revenue - Cost $)$

Algebra 1

