\qquad
Notes
Algebra Section 8.4
Pages 512-518
Goal: "You will read and write numbers in scientific notation"

Vocabulary:

Scientific Notation: A number written in the form \qquad $c \times 10^{n}$ where $1 \leq c<10$ and n is an integer.

Notes:
If the exponent is positive it tells you that the number is greater than 1.

If the exponent is negative it tells you that the number is less than 1.

Number	Standard Form	Scientific Notation
Two million	$\mathbf{2 , 0 0 0 , 0 0 0}$	$2 \times \mathbf{1 0}^{\mathbf{6}}$
Five thousandths	$\mathbf{0 . 0 0 5}$	$\mathbf{5 \times 1 0}$

Write the following numbers in scientific notation:
Ex: $42,590,000=\underline{4.259} \times 10^{7}$
Ex: $0.0000574=\underline{5.74} \times 10^{-5}$

Ex: $539,000=5.39 \times 10^{5}$
Ex: $267,500,000=2.675 \times 10^{8}$

Ex: $0.000486=4.86 \times 10^{-5}$

Write the following numbers in standard form:

Ex: $2.0075 \times 10^{6}=\underline{2,007,500} \quad$ Ex: $1.685 \times 10^{-4}=\underline{0.0001685}$

Ex: $7.0235 \times 10^{5}=\underline{702,350}$ Ex: $3.096 \times 10^{-7}=\underline{0.0000003096}$

Ex: $4.5 \times 10^{-4}=\underline{0.00045}$

Order numbers in scientific notation:

Ex: Order $103,400,000 ; 7.8 \times 10^{8} ; 80,760,000$ from least to greatest.
$80,760,000 ; 103,400,000 ; \quad 7.8 \times 10^{8}$

Ex: Order 93,000,000; $9.2 \times 10^{6} ; 9,028,000$ from least to greatest.
$9,028,000 ; 9.2 \times 10^{6} ; 93,000,000$

Multiply or divide numbers in scientific notation:

Ex: $\left(8.5 \times 10^{2}\right)\left(1.7 \times 10^{6}\right)$	Ex: $\left(1.5 \times 10^{-3}\right)^{2}$
1.445×10^{9}	2.25×10^{-6}
Ex: $\left(5.7 \times 10^{3}\right)\left(2.6 \times 10^{4}\right)$	Ex: $\left(2.4 \times 10^{-4}\right)^{2}$
1.482×10^{11}	5.76×10^{-8}

Ex: $\left(1.3 \times 10^{-5}\right)^{2}$
Ex: $\left(1.1 \times 10^{7}\right)\left(4.2 \times 10^{2}\right)$
1.69×10^{-10}
4.62×10^{9}
Ex: $\quad \frac{1.2 \times 10^{4}}{1.6 \times 10^{-3}}$
Ex: $\frac{4.5 \times 10^{5}}{1.5 \times 10^{-2}}$
7.5×10^{6}
3×10^{7}

Ex: $\frac{2.4 \times 10^{5}}{2.5 \times 10^{-4}}$
9.6×10^{8}

Ex: Blood flow is partially controlled by the cross-sectional area of the blood vessel through which the blood is traveling. Three types of blood vessels are venules, capillaries and arterioles.

a) Let r_{1} be the radius of a venule, and let r_{2} be the radius of a capillary. Find the ratio of r_{1} to r_{2}. What does the ratio tell you? The ratio tells you that the radius of the venule is twice the radius of the capillary.
b) Let A_{1} be the cross-sectional area of a venule and A_{2} be the cross-sectional area of a capillary. Find the ratio of A_{1} to A_{2}. What does the ratio tell you?

The ratio tells you that the cross-sectional area of the venule is four times the cross-sectional area of the capillary.

