Name:_____ Notes Algebra Section 8.4 Pages 512-518

Goal: "You will read and write numbers in scientific notation"

Vocabulary:

Scientific Notation: A number written in the form $c \times 10^n$ where $1 \le c < 10$ and *n* is an integer.

Notes:

If the exponent is positive it tells you that <u>the number is greater than 1</u>.

If the exponent is negative it tells you that <u>the number is less than 1</u>.

Number	Standard Form	Scientific Notation
Two million	2,000,000	$2 imes 10^6$
Five thousandths	0.005	$5 imes 10^{-3}$

Write the following numbers in scientific notation:

Ex: $42,590,000 = \frac{4.259}{10^7}$ **Ex:** $0.0000574 = \frac{5.74}{10^{-5}}$ **X** 10^{-5}

Ex: 539,000 = 5.39×10^5 **Ex:** 267,500,000 = 2.675×10^8

Ex: $0.000486 = 4.86 \times 10^{-5}$

Date:_____

Ex: 2.0075 X $10^6 = 2.007,500$ **Ex:** 1.685 X $10^{-4} = 0.0001685$

Ex: 7.0235 X $10^5 = 702,350$

Ex: 3.096 X $10^{-7} = 0.000003096$

Ex: 4.5 X $10^{-4} = 0.00045$

Order numbers in scientific notation:

Ex: Order 103,400,000; 7.8×10^8 ; 80,760,000 from least to greatest.

80,760,000; 103,400,000; 7.8×10⁸

Ex: Order 93,000,000; 9.2×10^6 ; 9,028,000 from least to greatest.

9,028,000; 9.2 \times 10⁶; 93,000,000

Multiply or divide numbers in scientific notation:

Ex: $(8.5 \times 10^2)(1.7 \times 10^6)$	Ex: $(1.5 \times 10^{-3})^2$
1.445×10^{9}	2.25×10^{-6}
Ex: $(5.7 \times 10^3)(2.6 \times 10^4)$	Ex: $(2.4 \times 10^{-4})^2$
1.482×10^{11}	5.76×10^{-8}
Ex: $(1.3 \times 10^{-5})^2$	Ex: $(1.1 \times 10^7)(4.2 \times 10^2)$
1.69×10^{-10}	4.62×10^{9}

Ex:	$\frac{1.2 \times 10^4}{1.6 \times 10^{-3}}$	Ex: $\frac{4.5 \times 10^5}{1.5 \times 10^{-2}}$
7.5 ×	10 ⁶	3×10^{7}

Ex: $\frac{2.4 \times 10^5}{2.5 \times 10^{-4}}$

 9.6×10^{8}

Ex: Blood flow is partially controlled by the cross-sectional area of the blood vessel through which the blood is traveling. Three types of blood vessels are venules, capillaries and arterioles.

a) Let r_1 be the radius of a venule, and let r_2 be the radius of a capillary. Find the ratio of r_1 to r_2 . What does the ratio tell you? The ratio tells you that the radius of the venule is twice the radius of the capillary.

b) Let A_1 be the cross-sectional area of a venule and A_2 be the cross-sectional area of a capillary. Find the ratio of A_1 to A_2 . What does the ratio tell you? The ratio tells you that the cross-sectional area of the venule is four times the cross-sectional area of the capillary.