Name:		Date:	
Notes			
Algebra Section 8.4			
Pages 512-518			
Goal: "You will read and write numbe	ers in scientific notation"	, in the second second	
	20 211 0 010 11110 110 111 2011		
Vocabulary:			
Scientific Notation: A number written in the form		where	and
<i>n</i> is an			
Notes:			
If the exponent is positive it tells you th	iat		
y			
If the exponent is negative it tells you the	nat		
Number	Standard Form	Scientific Notation	
Two million	2,000,000	2×10^6	
Five thousandths	0.005	5×10^{-3}	
Write the following numbers in scient Ex: 42,590,000 = X 1		74 =X 10 [?]	
Ex: 539,000 =	Ex: 267,500,000 =		

Ex: 0.000486 = _____

Write the following numbers in standard form:

Ex:
$$2.0075 \times 10^6 =$$

Ex:
$$7.0235 \times 10^5 =$$

Ex:
$$3.096 \times 10^{-7} =$$

Ex:
$$4.5 \times 10^{-4} =$$

Order numbers in scientific notation:

Ex: Order 103,400,000; 7.8×10^8 ; 80,760,000 from least to greatest.

Ex: Order 93,000,000; 9.2×10^6 ; 9,028,000 from least to greatest.

$\label{eq:multiply} \textbf{Multiply or divide numbers in scientific notation:}$

Ex:
$$(8.5 \times 10^2)(1.7 \times 10^6)$$

Ex:
$$(1.5 \times 10^{-3})^2$$

Ex:
$$(5.7 \times 10^3)(2.6 \times 10^4)$$

Ex:
$$(2.4 \times 10^{-4})^2$$

Ex:
$$(1.3 \times 10^{-5})^2$$

Ex:
$$(1.1 \times 10^7)(4.2 \times 10^2)$$

Ex: $\frac{1.2 \times 10^4}{1.6 \times 10^{-3}}$

Ex: $\frac{4.5\times10^5}{1.5\times10^{-2}}$

Ex: $\frac{2.4\times10^5}{2.5\times10^{-4}}$

Ex: Blood flow is partially controlled by the cross-sectional area of the blood vessel through which the blood is traveling. Three types of blood vessels are venules, capillaries and arterioles.

a) Let r_1 be the radius of a venule, and let r_2 be the radius of a capillary. Find the ratio of r_1 to r_2 . What does the ratio tell you?

b) Let A_1 be the cross-sectional area of a venule and A_2 be the cross-sectional area of a capillary. Find the ratio of A_1 to A_2 . What does the ratio tell you?