\qquad
Notes
Algebra Section 8.4

Pages 512-518

Goal: "You will read and write numbers in scientific notation"

Vocabulary:

Scientific Notation: A number written in the form \qquad where \qquad and
n is an \qquad .

Notes:
If the exponent is positive it tells you that \qquad

If the exponent is negative it tells you that \qquad

Number	Standard Form	Scientific Notation
Two million	$\mathbf{2 , 0 0 0 , 0 0 0}$	$2 \times \mathbf{1 0}^{6}$
Five thousandths	$\mathbf{0 . 0 0 5}$	$5 \times \mathbf{1 0}^{\mathbf{3}}$

Write the following numbers in scientific notation:
Ex: $42,590,000=$ \qquad $\times 10^{?}$
Ex: $0.0000574=$ \qquad $\times 10^{?}$

Ex: $539,000=$ \qquad Ex: $267,500,000=$ \qquad

Ex: $0.000486=$ \qquad

Write the following numbers in standard form:

Ex: $2.0075 \times 10^{6}=$ \qquad
$\mathbf{E x}: 7.0235 \times 10^{5}=$ \qquad Ex: $3.096 \times 10^{-7}=$ \qquad

Ex: $4.5 \times 10^{-4}=$ \qquad

Order numbers in scientific notation:

Ex: Order $103,400,000 ; 7.8 \times 10^{8} ; 80,760,000$ from least to greatest.

Ex: Order $93,000,000 ; 9.2 \times 10^{6} ; 9,028,000$ from least to greatest.

Multiply or divide numbers in scientific notation:

Ex: $\left(8.5 \times 10^{2}\right)\left(1.7 \times 10^{6}\right) \quad$ Ex: $\left(1.5 \times 10^{-3}\right)^{2}$

Ex: $\left(5.7 \times 10^{3}\right)\left(2.6 \times 10^{4}\right)$ Ex: $\left(2.4 \times 10^{-4}\right)^{2}$

Ex: $\left(1.3 \times 10^{-5}\right)^{2}$
Ex: $\left(1.1 \times 10^{7}\right)\left(4.2 \times 10^{2}\right)$
Ex: $\frac{1.2 \times 10^{4}}{1.6 \times 10^{-3}}$
Ex: $\frac{4.5 \times 10^{5}}{1.5 \times 10^{-2}}$

Ex: $\frac{2.4 \times 10^{5}}{2.5 \times 10^{-4}}$

Ex: Blood flow is partially controlled by the cross-sectional area of the blood vessel through which the blood is traveling. Three types of blood vessels are venules, capillaries and arterioles.

a) Let r_{1} be the radius of a venule, and let r_{2} be the radius of a capillary. Find the ratio of r_{1} to r_{2}. What does the ratio tell you?
b) Let A_{1} be the cross-sectional area of a venule and A_{2} be the cross-sectional area of a capillary. Find the ratio of A_{1} to A_{2}. What does the ratio tell you?

