Name:_____ Notes Algebra Section 8.3 Pages 503-508

Goal: "You will use zero and negative exponents"

1) $a^0 = 1$ $5^0 = 1$ 2) a^{-n} is the reciprocal of a^n $2^{-1} = \frac{1}{2}$

Date:____

Zero Exponent

Follow the Pattern:	Proof:
$2^5 = 32$	$\frac{x^5}{x^5} = x^0$ Use your exponent rule.
$2^4 = 16$	Anything divided by itself is? 1
$2^3 = 8$	so $x^0 = 1$
$2^2 = 4$	
$2^1 = 2$	
$2^0 = ?$ Since the pattern is that you keep dividing b	by 2, the next number would be 1

Negative Exponent

Follow the Patterm:

Proof:

2 ² =	4			$\frac{a^m}{a^n} = a^{m-n}$	
$2^1 =$	2				
$2^{0} =$	1				
$2^{-1} =$	$\frac{1}{2}$ or $\frac{1}{2^1}$		$\frac{2^4}{2^5} =$	$\frac{2\cdot 2\cdot 2\cdot 2}{2\cdot 2\cdot 2\cdot 2\cdot 2} =$	$\frac{1}{2^1}$
$2^{-2} =$	$\frac{1}{4}$ or $\frac{1}{2^2}$				

Simplify the following expressions. Write your answer using positive exponents.

