\qquad
Notes
Algebra Section 8.3
Pages 503-508
Goal: "You will use zero and negative exponents"

1) $a^{0}=1$	$5^{0}=1$
2) a^{-n} is the reciprocal of a^{n}	$2^{-1}=\frac{1}{2}$

Zero Exponent

Follow the Pattern:

$2^{5}=32$
$2^{4}=16$
$2^{3}=8$
$2^{2}=4$
$2^{1}=2$
$2^{0}=$? Since the pattern is that you keep dividing by 2 , the next number would be 1

Negative Exponent

Follow the Patterm:

$2^{2}=$
4
$2^{0}=$ 1
$2^{-1}=$

$$
\frac{1}{2} \text { or } \frac{1}{2^{1}}
$$

$$
2^{-2}=\quad \frac{1}{4} \text { or } \frac{1}{2^{2}}
$$

Proof:

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

$$
\frac{2^{4}}{2^{5}}=\frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}=\quad \frac{1}{2^{1}}
$$

Simplify the following expressions. Write your answer using positive exponents.
Ex: x^{-2}
Ex: 4^{-3}
$\mathbf{E x}: \frac{1}{y^{-3}}$
$\frac{1}{x^{2}}$
$\frac{1}{4^{3}}=\frac{1}{64}$
$\frac{1}{\frac{1}{y^{3}}}=1 \div \frac{1}{y^{3}}=\frac{1}{1} \cdot \frac{y^{3}}{1}=y^{3}$

Ex: $\left(\frac{2}{3}\right)^{0}$
Ex: $(-8)^{-2}$
Ex: $\frac{1}{2^{-3}}$

$$
\frac{1}{64}
$$

$$
8
$$

1

Ex: $(-1)^{0}$
$\mathbf{E x}:\left(\frac{2}{3}\right)^{-2}$
$\mathbf{E x}: \frac{7^{3}}{7^{5}}$

1

$$
\frac{9}{4}
$$

$$
\frac{1}{49}
$$

Ex: $\frac{5^{-1}}{5^{2}}$
Ex: $\left(2 x y^{-5}\right)^{3}$
Ex: $\frac{(2 x)^{-2} y^{5}}{-4 x^{2} y^{2}}$

$$
\frac{1}{125}
$$

$$
\frac{8 x^{3}}{y^{15}}
$$

$$
-\frac{y^{3}}{16 x^{4}}
$$

Ex: $\left(3 x^{-2} y^{2}\right)^{3}$

$$
\frac{27 y^{6}}{x^{6}}
$$

$$
\text { Ex: } \begin{array}{r}
\frac{4 x^{-2} y^{4}}{8 x y^{6}} \\
\frac{1}{2 x^{3} y^{2}}
\end{array}
$$

