\qquad
Notes
Algebra Section 8.2

Pages 495-501

Goal: "Use properties of exponents involving quotients."

1) $\frac{a^{m}}{a^{n}}=a^{m-n}$

2) $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$

Write out the following as a quotient:
$\frac{a^{5}}{a^{3}} \frac{\mathrm{a}^{5}}{\mathrm{a}^{3}}=\frac{a \cdot a \cdot a \cdot a \cdot a}{a \cdot a \cdot a}=a \cdot a=a^{2}$
Can you come up with a rule for dividing expressions with the same base raised to a power?
Keep the base. Subtract the exponents.
Simplify the following expressions. Write the answer using an exponent.
Ex: $\frac{4^{7}}{4^{2}}$
$\mathbf{E x}: \frac{8^{10}}{8^{4}}$
$\mathbf{E x}: \frac{5^{4} \cdot 5^{8}}{5^{7}}$
4^{5}
8^{6}

$$
5^{5}
$$

$\mathbf{E x}: \frac{(-3)^{9}}{(-3)^{3}}$
Ex: $\frac{1}{x^{4}} \cdot x^{6}$
$\mathbf{E x}: \frac{9^{12}}{9^{5}}$
3^{6}
x^{2}
9^{7}
$\mathbf{E x}: \frac{(-2)^{4}}{(-2)^{3}}$
$\mathbf{E x}: \frac{6^{3} \cdot 6^{4}}{6^{2}}$
Ex: $\frac{1}{r^{5}} \cdot r^{8}$

$$
r^{3}
$$

Write the following out as a product:
$\left(\frac{a}{b}\right)^{4}=\quad \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b}=\frac{a \cdot a \cdot a \cdot a}{b \cdot b \cdot b \cdot b}=\frac{a^{4}}{b^{4}}$
Can you come up with a rule to simplify a quotient being raised to a power?
Fraction raised to a power, both numerator and denominator get raised to the power

Use the rule you came up with to simplify the following expressions.
Ex: $\left(\frac{3}{2}\right)^{7}$
Ex: $\left(\frac{x}{y}\right)^{3}$
Ex: $\left(\frac{-7}{x}\right)^{2}$
$\frac{3^{7}}{2^{7}}$
$\frac{x^{3}}{y^{3}}$
$\frac{49}{x^{2}}$

Ex: $\left(\frac{c}{d}\right)^{6}$
Ex: $\left(\frac{-2}{y}\right)^{4}$
$\mathbf{E x}:\left(\frac{4 x^{2}}{5 y}\right)^{3}$
$\frac{c^{6}}{d^{6}}$
$\frac{16}{y^{4}}$
$\frac{64 x^{6}}{125 y^{3}}$
$\mathbf{E x}:\left(\frac{a^{2}}{b}\right)^{5}$

$$
\frac{a^{10}}{b^{5}}
$$

