Name:_____ Notes Algebra Section 8.1 Pages 489-494

Goal: "Use properties of exponents involving products"

1. $a^{m} \cdot a^{n} = a^{m+n}$ **2.** $(a^{m})^{n} = a^{mn}$ **3.** $(ab)^{m} = a^{m} \cdot b^{m}$

Write the following expressions out as products:

$$a^2 = a \cdot a$$
 $a^3 = a \cdot a \cdot a$

So then how would you multiply....?

$$a^2 \cdot a^3 = a \cdot a \cdot a \cdot a \cdot a$$

Can you come up with a rule to multiply expressions that have the same base and also have exponents?

Keep the base and add the exponents.

Use the rule to multiply the following. Write your answer as an exponent:

Ex: $7^3 \cdot 7^5$	Ex: $4^7 \cdot 4^6$	Ex: $9 \cdot 9^8 \cdot 9^2$
7 ⁸	4 ¹³	9 ¹¹
Ex: $8^5 \cdot 8 \cdot 8^2$	Ex: $(-5)(-5)^6$	Ex: $(-3)^3(-3)$
8 ⁸	(-5) ⁷	(-3) ⁴
Ex: $x^7 \cdot x^3$	Ex: $b \cdot b^3 \cdot b^5 \cdot b^2$	
x^{10}	b^{11}	

Date:____

Write out the following expression as a product:

 $(a^2)^3 = (a \cdot a)^3 = (a \cdot a) \cdot (a \cdot a) \cdot (a \cdot a) = a^6$

Can you come up with a rule to simplify an expression with an exponent raised to a power?

Keep the base and multiply the exponents.

Use the rule to simplify the following expressions. Write your answer as an exponent:				
Ex: $(3^4)^2$	Ex: $(2^5)^3$	Ex: $[(-6)^5]^2$		
3 ⁸	2 ¹⁵	$(-6)^{10}$		
Ex: $[(y+2)^2]^6$	Ex: $(4^2)^7$	Ex: $(2^7)^4$		
$(y+2)^{12}$	4 ¹⁴	2 ²⁸		
Ex: $(y^3)^3$	Ex: $[(n+8)^2]^9$			
y ⁹	$(n+8)^{18}$			

Write out the following expression a product:

 $(ab)^{3} = (ab)(ab)(ab) = a \cdot a \cdot a \cdot b \cdot b \cdot b$

Can you come up with a rule to simplify a product being raised to a power?

Each base is raised to the power.

Use your rule to simplify the following expressions. Write your answer as an exponent:

Ex: $(23 \cdot 17)^5$	Ex: $(24.13)^8$	Ex: $(34.9)^6$
$23^5 \cdot 17^5$	$24^8 \cdot 13^8$	$34^{6} \cdot 9^{6}$

Simplify the following expressions:

Ex: $(9xy)^2$	Ex: $(-4z)^2$	Ex: $-(4z)^2$
81 <i>x</i> ² <i>y</i> ²	16z²	-16z ²
Ex: $(9m^3n^4)^2$	Ex: $(4mn)^3$	Ex: $(-2g)^4$
$81m^6n^8$	$64m^3n^3$	$16g^{4}$
Ex: $-(5x)^2$	Ex: $(2x^3)^2 \cdot x^4$	Ex: $(3d^5)^2 \cdot d$
$-25x^{2}$	$4x^{10}$	9 <i>d</i> ¹¹

Ex: $5 \cdot (5x^2)^4$

3125*x*⁸