\qquad
Notes
Algebra Section 7.5
Pages 459-465
Goal: "Solve and identify when a system of equations has one solution, no solution or an infinite number of solutions"

Remember:

What is a solution to a linear system?

1) An \qquad that when \qquad in
works for \qquad equations.
2) The \qquad of \qquad .

- Then what would you say is the solution if you graphed two lines and they happened to be parallel? When are two lines parallel?
- What would you say if you graphed two lines and they were the exact same line? When are two lines exactly the same?
- If two lines are not parallel, then what must be true about them?

When are lines not parallel?

RECALL

Solve each equation or inequality.

Ex: $3(x+4)=3 x+16$
Ex: $4(2 x+6)=8(x+3)$

Ex: $2 x-3 x+6 \leq-(x-10)$
Ex: $3(6 x-1)>2(9 x-1)$
*Regardless of if you are solving an equation or an inequality what is the general rule that applies to both types of problems?

If you get a \qquad statement then the solution is "infinite solutions"

If you get a \qquad statement then the solution is "no solution"

Solve each system using the method of your choice:

Ex: $3 x+2 y=10$
$3 x+2 y=2$

Ex: $x-2 y=-4$

$$
y=\frac{1}{2} x+2
$$

Solve each system by graphing.
Ex: $2 x-3 y=6$
$2 x-3 y=-4$
Ex: $4 x-2 y=8$
$y=2 x-4$

Identify the number of solutions of a linear system:

- A system of equations will have \qquad when the two lines are \qquad -.

They are \qquad when they have the same \qquad but different
\qquad

- A system of equations will have an \qquad

\qquad when the two lines are exactly the \qquad .

They are the \qquad
\qquad when they have the same \qquad and
\qquad .

- A system of equations will have exactly \qquad
\qquad when the two lines are not
\qquad .

They are not \qquad when their \qquad are \qquad -

The \qquad is \qquad .

Number of Solutions	Slopes and y-intercepts

If you can quickly identify the slope and y-intercept of each line, then you can state how many solutions the system has without solving.

- What do you need to do to be able to quickly identify the slope and y-intercept of a line?

The line needs to be in \qquad form first.

Without solving the system, tell whether there is one solution, no solution or infinitely many solutions.

Ex: $5 x+y=-2$
$-10 x-2 y=4$
Ex: $6 x+2 y=3$
$6 x+2 y=-5$
Ex: $-3 x+5 y=6$
$6 x-10 y=-12$
Ex: $9 x-5 y=12$
Ex: $x-3 y=-15$
$9 x-5 y=8$
$2 x-3 y=-18$
Ex: $\quad 3 x-4 y=6$
$4 y-3 x=12$

Use the graphs below to show a system of equations with:

a. No solution
b. One solution
c. Infinitely many solutions

\qquad

