Name			Date:	_
Notes				
Algebi	a Section 7.5			
Pages	459-465			
Goal:	"Solve and identify when no solution or an infinite	n a system of equations has one e number of solutions"	solution,	
Reme	mber:			
What	is a solution to a linear	system?		
	1) An		_ that when	in
works	for	_equations.		
	2) The	of		
• Ther	n what would you say is When are two lines par	the solution if you graphed tw rallel?	o lines and they happened to be para	llel?

- What would you say if you graphed two lines and they were the exact same line? When are two lines **exactly the same**?
- If two lines are **not** parallel, then what must be true about them? When are lines **not** parallel?

RECALL

Solve each equation or inequality.

Ex: 3(x + 4) = 3x + 16

Ex: 4(2x+6) = 8(x+3)

Ex: $2x - 3x + 6 \le -(x - 10)$

Ex: 3(6x - 1) > 2(9x - 1)

*Regardless of if you are solving an <u>equation</u> or an <u>inequality</u> what is the general rule that applies to both types of problems?

If you get a ______ statement then the solution is "infinite solutions"

If you get a ______ statement then the solution is "no solution"

Solve each system using the method of your choice:

Ex:
$$3x + 2y = 10$$

 $3x + 2y = 2$
Ex: $x - 2y = -4$
 $y = \frac{1}{2}x + 2$

Ex:
$$5x + 3y = 6$$

 $-5x - 3y = 3$
Ex: $y = 2x - 4$
 $-6x + 3y = -12$

Solve each system by graphing.

Ex: 2x - 3y = 62x - 3y = -4

Ex: 4x - 2y = 8y = 2x - 4

Identify the number of solutions of a linear system:

\cdot A system of equations will h	have	when the two lines are		
They are	when they have	e the same	but different	t
• A system of equations will l	have an when the two lines a	are exactly the		_
They are the		when they	y have the same	and
• A system of equations will l	have exactly		when the two lines a	ire not
They are not	whe	en their	are	
Number of Solu	utions		Slopes and y-intercepts	

If you can quickly identify the slope and *y*-intercept of each line, then you can state how many solutions the system has **without solving**.

- What do you need to do to be able to quickly identify the slope and *y*-intercept of a line?

The line needs to be in ______ form first.

Without solving the system, tell whether there is one solution, no solution or infinitely many solutions.

Ex: $5x + y = -2$	Ex: $6x + 2y = 3$	Ex: $-3x + 5y = 6$
-10x - 2y = 4	6x + 2y = -5	6x - 10y = -12

Ex: $9x - 5y = 12$	Ex: $x - 3y = -15$	Ex:	3x - 4y = 6
9x - 5y = 8	2x - 3y = -18		4y - 3x = 12

Use the graphs below to show a system of equations with:

a. No solution	b. One solution	c. Infinitely many solutions