Name:				Date:	
Notes Algebra Section 6.7	7				
Pages 405-412					
Goal: "You will g	raph linear inequali	ties in two variables"			
Vocabulary: Line	ear inequality in two	variables: The result	of	the	= sign in a
		with a	,,,	, or	
Solution of an ineq	uality in two variab	les: x and y are an			(,) that
produces a		when the values of	of x and y are		_ into the
Determine if an or	 rdered pair is a sol	ution:			
1) Plug in for <i>x</i> and	d y and solve.				
2) Does it produce	a true statement?				
Ex: Which of the	following are soluti	ons to $x - 3y \le 6$?			
a (0, 0)	L (6 1)	· (10, 2)	\mathbf{J} (1.2)		
a. (0, 0)	0. (0, -1)	c. (10, <i>3)</i>	u. (-1, 2)		
Ex: Tell whether t	he given ordered pa	tir is a solution to: $-x$	+ 2 <i>y</i> < 8		
a. (0, 0)	b. (0, 4)	c. (3, 5)	d. (-2, 3)		
Graphing a linear	[•] inequality in two	variables:			
1) Graph the inequ	ality the same way	you would graph a lin	e.		
Either use _		or		·	
*If the	is	or, draw	a dotted line. Th	nis means th	at the on
the line are	part of th	ne solution.			
*If the	is	or dra	aw a solid line. T	his means th	at the on
the line are		in the solution.			
2) Choose a		(typically the	if possib	ole) that is lo	cated on one side of
the line. Plug your		into the		to see	e if it works.
If it does, th	nen the test point is	part of the solution.	th	e side conta	ining the test point.
If it does no	ot work, then the tes	t point is not part of th	ne solution.	t	he other side.

Graph the following linear inequalities:

Ex: y > 4x - 3

Ex: $x + 2y \le 0$

		_	У		
		-3			
		-1			
-3	-1	- 1	1	3	x
-3		-1	1	3	x

Ex: $x - y \ge -1$

			У		
the state of the s					
	-3	$-\frac{1}{1}$		3	x
	-3	$\frac{-1}{-3}$		3	x

Ex: $y \ge 3x + 1$

Ex: x + 4y < -8

Ex: You have 2 summer jobs at a youth center. You earn \$8 per hour giving basketball lessons and \$10 giving swimming lessons. Let *x* represent the number of hours you spend coaching basketball and *y* represent the amount of time you spent giving swimming lessons. Your goal is to earn at least \$200 per week.

- a. Write an inequality to represent the situation
- b. Graph the inequality.
- c. Give two possible solutions so you would make the amount you want.

Write the inequality of each graph shown.

·····

