Name:_	

Date:____

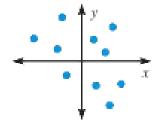
Notes

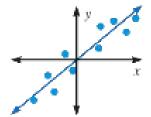
Algebra Section 5.6

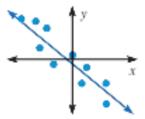
Pages 325-331

Goal: "You will decide if a set of data has a positive correlation, negative correlation, or relatively no correlation"

"You will write an equation of a line to model non-linear data if possible"

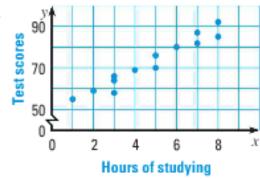

Vocabulary:


Positive correlation:	If, on a scatter plot,	tends to	as	, then it is
a				

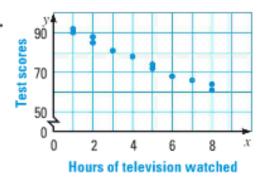

Negative correlation: If, on a scatter plot, _____tends to _____ as _____, then it is a

Relatively no correlation: _____ and ____ appear to have no relationship when displayed on a scatter plot.

Ex: State the type of correlation the graphs below display:


Ex: Describe a situation you would consider to represent a positive correlation

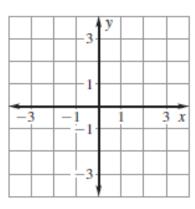
Ex: Describe a situation you would consider to represent a negative correlation


Ex: Describe a situation you would consider to have relatively no correlation

Ex: Describe the correlation of the data graphed in the scatter plot

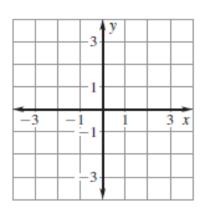
a.

b.



Ex: Using the scatter plots above, predict a reasonable test score for 4.5 hours of studying and 4.5 hours of television watched.

Make a scatter plot of the data then draw a line of best fit. Be sure to state which points you are using for your line, then write the equation of your line in slope-intercept form.

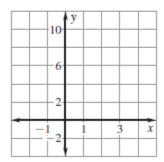

Ex:

x	-2	-1	-1	0	1	2
y	2	1	0	-1	-2	-3

Ex:

X	-5	-4	-3	-2	-1	0
y	1	0	1	3	2	4

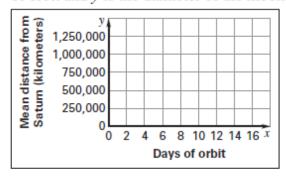
Make a scatter plot of the data. *Describe* the correlation of the data. If possible, fit a line to the data and write the equation of the line.

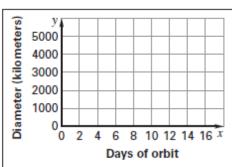

Ex:

X	4.8	5	5.4	5.8	6.1	6.3	6.5
y	1	2	1	3	4	6	5

,	y					
-5-						
- 3						
-1-						
٦,	, 1	- 3	3	- 5	5	x

Ex:


X	3	2	2	2	1	1	0
<i>y</i>	9	8	6	3	4	2	0



Ex: Saturn's Moons The table shows a moon's mean distance from the Saturn, the moon's diameter, and the number of days it takes the moon to orbit Saturn.

Moon	Mimas	Janus	Tethys	Prometheus	Titan
Mean distance (km)	185,520	151,470	294,660	139,350	1,221,830
Days of orbit	0.94	0.6945	1.88	0.6139	15.94
Diameter (km)	392	178	1060	92	5150

a. Make a scatter plot where *x* is the number of days of orbit and *y* is the mean distance from Saturn. Make another scatter plot where *x* is the number of days of orbit and *y* is the diameter of the moon.

b. Draw conclusions about the data.