Name: Date: \qquad
Notes
Algebra Section 5.4
Pages 311-316
Goal: "You will write equations in standard form"

STANDARD FORM!

$$
A x+B y=C
$$

A is always the coefficient of $\underline{x} \quad$ B is always the coefficient of y.
C is always the constant.
You always want A to be positive and not a fraction or decimal.

1. Write equivalent equations in standard form:

Example:
You can divide both sides by the same common factor.

You can multiply both sides by the same number.
multiply by 2
$2 x-6 y=4$

All three of these equations are in standard form and all of them are equivalent.
Try These:

1) $x-y=3$
2) $x+4 y=3$

Many answers are acceptable
Possible answer: $2 x-2 y=6$
Possible answer: $2 x+8 y=6$
You may need to multiply or divide both sides so that A is not negative.
Example:

$$
-2 x+3 y=8
$$

A (the coefficient of x is a negative)

$$
2 x-3 y=-8
$$

Multiply both sides of the equation by -1
Try These:
$-3 x+2 y=-4$
$-x-4 y=2$
$-2 x-3 y=-5$
$3 x-2 y=4$
$x+4 y=-2$
$2 x+3 y=5$

You may need to multiply or divide both sides so that \mathbf{A} is not a fraction.
Example:

$$
\frac{1}{3} x+2 y=1
$$

A (the coefficient of x is a fraction)
Multiply both sides of the equation by 3

$$
x+6 y=3
$$

(the denominator of A)
Try These:
$\frac{1}{4} x+y=-2$

$$
\frac{2}{3} x-5 y=-1
$$

$x+4 y=-8$

$$
\frac{2}{5} x-3 y=3
$$

$$
2 x-15 y=-3
$$

You may need to multiply or divide both sides so that \mathbf{A} is not a decimal.

Example:

$$
0.6 x+3 y=4
$$

A (the coefficient of x is a decimal)

$$
6 x+30 y=40
$$

Multiply both sides of the equation by 10 (to clear the decimal)

Try These:
$0.4 x+y=-2$
$1.3 x-2 y=1$
$0.55 x-2 y=-3$
$4 x+10 y=-20$
$13 x-20 y=10$
$55 x-200 y=-300$

You may need to multiply or divide both sides so that \mathbf{A} is not a negative and a fraction/decimal.
Example:

$$
-\frac{1}{3} x+3 y=-1
$$

A (the coefficient of x is a fraction and negative)

$$
x-9 y=3
$$

Multiply both sides of the equation by -3
(to get rid of the fraction and negative)
Try These:
$-\frac{3}{4} x-2 y=-3$
$-\frac{1}{5} x-y=5$
$-\frac{2}{3} x-2 y=-2$
$3 x+8 y=12$

$$
x+5 y=-25
$$

$$
2 x+6 y=6
$$

$-0.3 x+2 y=-4$
$3 x-20 y=40$
$-2.4 x-y=3$
$24 x+10 y=-30$
$-0.22 x+5 y=1$
$22 x-500 y=-100$

Write equations in standard form with given information.

Ex:

Find the slope
Find the y-intercept
Write the equation using \underline{m} and \underline{b}
Rewrite the equation in standard form.

$$
\begin{aligned}
& m=-3 \quad b=4 \\
& y=-3 x+4 \\
& 3 \boldsymbol{x}+\boldsymbol{y}=\mathbf{4}
\end{aligned}
$$

Try These: (Make sure A is a positive whole number)

1) Passes through $(3,-1)(2,-3)$
$m=2 b=-7$
$y=2 x-7$
$-2 x+y=-7$ A cannot be negative so multiply both sides by -1 .
$2 x-y=7$
2) Passes through $(2,2)(4,-2)$

$$
\begin{array}{lr}
m=-2 & b=6 \\
y=-2 x+6 & \\
2 x+y=6 &
\end{array}
$$

Complete an equation in standard form

For each equation use the information to find the missing coefficient. Then write the equation in standard form.
Ex: $A x+3 y=2$, passes through the point $(-1,0)$
$x=$ \qquad $y=\underline{0}$
Plug them in and solve for A .

$$
\begin{aligned}
& A(-1)+3(0)=2 \\
& -A=2 \\
& A=-2
\end{aligned}
$$

Write the equation in standard form.

$$
2 x-3 y=-2
$$

Try These:
2) $A x+4 y=6$, passes through the point $(2,0)$

$$
\begin{gathered}
A(2)+4(0)=6 \\
2 A=6 \\
A=3 \\
3 x+4 y=6
\end{gathered}
$$

1) $-4 x+B y=7$, passes through the point $(-1,1)$
$-4(-1)+B(1)=7$
$4+B=7$

$$
B=3
$$

$-4 x+3 y=7 \quad 4 x-3 y=-7$
3) $A x+y=-3$, passes through the point $(2,11)$
$A(2)+11=-3$
$2 A=-14$
$A=-7$
$-7 x+y=-3 \quad 7 x-y=3$

Ex: Your class is taking a trip to the public library. You can travel in small and large vans. A small van holds 8 people and a large van holds 12 people. One possible way your class could get there is to fill 15 small vans and 2 large vans.
a. Write an equation to model all of the possible combinations of small and large vans your class could take. If one possibility is 15 small vans and 2 large vans then multiply 15 and 8 and 12 and 2 to find the total number of people that need to go.

$$
8 x+12 y=144
$$

b. Graph the equation.
c. Use your graph to find more possible combinations of vans.

12 small vans, 4 large vans
0 small vans, 12 large vans
18 small vans, 0 large vans
6 small vans, 8 large vans

Ex: At a flea-market t-shirts cost $\$ 4.50$ and shorts cost $\$ 6$. You have enough money that if you wanted to you could buy exactly 12 t-shirts and 9 pairs of shorts.
a. Write an equation to model all of the possible combinations of t-shirts and shorts that you can buy.

$$
4.5 x+6 y=108
$$

b. Graph the equation.
c. List the possible combinations of t -shirts and shorts you can buy.

0 T-Shirts, 18 shorts
24 T-shirts, 0 shorts
16 T-shirts, 6 shorts
8 T-shirts, 12 shorts

