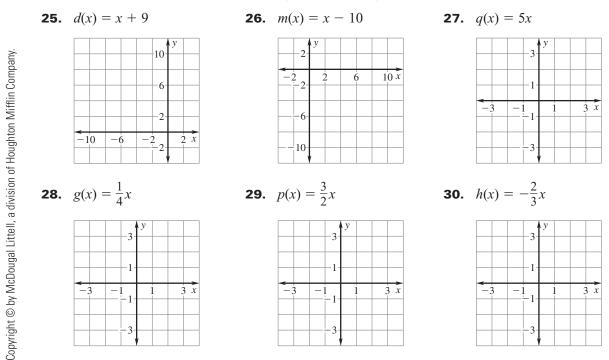
Date	

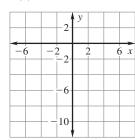
Name _____

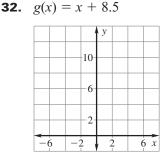
LESSON	Practice C
4.7	For use with pages 262–268


Evaluate the function when x = -3, 2, and 4.5.

1. $f(x) = 5.2x - 4$	2. $g(x) = -6x + 2.2$	3. $p(x) = -3.2x - 7.1$
4. $h(x) = 8.5 - 10x$	5. $m(x) = 5x + 12.7$	6. $f(x) = -2.8x + 14.3$
7. $s(x) = \frac{7}{3}x - 2$	8. $d(x) = \frac{9}{2}x + \frac{3}{4}$	9. $h(x) = \frac{5}{4} - \frac{1}{2}x$
10. $f(x) = -7.2x + 6$	11. $g(x) = 2.25x - 3$	12. $h(x) = 4.3x - 2.1$

Find the value of x so that the function has the given value.


13. $f(x) = 8x + 9; -7$	14. $d(x) = 11x - 15; 40$
15. $p(x) = 14 - 4x; 26$	16. $h(x) = 13x - 4; -43$
17. $q(x) = 6x + 4; 13$	18. $g(x) = 9 - 7x; 44$
19. $m(x) = -5x + 13; -14$	20. $n(x) = 12x - 17; 19$
21. $s(x) = 20x - 34; -134$	22. $f(x) = -6.5x + 7.4; -70.6$
23. $g(x) = 10.2x - 8.1; -39.6$	24. $h(x) = 6.75x - 2.5; 58.25$

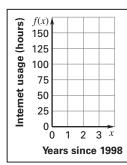

Graph the function. *Compare* your graph to the graph of f(x) = x.

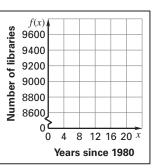
	_
LESSON	Practice C continued
4./	For use with names 262–268

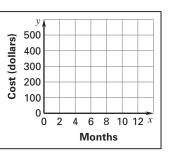
31. d(x) = x - 7.5

33. p(x) = 2.5x

Date _


	3	у	
-3	$-\frac{1}{-1}$	1	3 x


Match the function with the description of its graph.


34. g(x) = 7x

- **35.** g(x) = x + 7
- **A.** graph of *f* shifted up 7 units
- **B.** graph of *f* shifted down 7 units
- **37.** Internet Usage The number of hours people in the United States spent using the Internet each year from 1998 to 2001 can be modeled by the function f(x) = 26.4x + 54.4 where x is the number of years since 1998.
 - **a.** Graph the function and identify its domain and range.
 - **b.** Find the number of hours that people spent on the Internet in 2000. *Explain* how you found your answer.
 - **c.** When did people spend about 120 hours per year on the Internet? *Explain* how you found your answer.
- **38.** Public Libraries The number of libraries in the United States from 1980 to 2000 can be modeled by the function f(x) = 38.9x + 8685.8 where *x* is the number of years since 1980.
 - **a.** Graph the function and identify its domain and range.
 - **b.** Find the number of libraries in the United States in 1996. *Explain* how you found your answer.
 - **c.** When were there 9000 libraries in the United States? *Explain* how you found your answer.
- **39.** Gym Membership You join a gym that charges a \$75 initial sign up fee and \$35 a month for a membership. The total cost of the membership can be modeled by f(x) = 35x + 75 where *x* is the number of months of the membership. After some time, you decide to rent a locker that costs \$50 for the entire year. A function for the total cost of the membership with the locker rental is g(x) = 35x + 125. Graph both functions. How is the graph of *g* related to the graph of *f*?

- **36.** g(x) = x 7
- **C.** graph of f dilated by factor of 7

