Name: \qquad
Notes
Algebra Section 4.4
Pages 235-242
Goal: "You will find the slope of a line given two points"
"You will find the slope of a graphed line"
"You will find and interpret rate of change"
Date: \qquad

Definition

Formulas

SLOPE -
The ratio of vertical change to horitzontal change of a line

SYNONYM:
Steepness of a line

Find the slope of the line that passes through the given points. (Be sure to write down the formula you are using)

Ex: $(5,2)$ and $(4,-1)$

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{-1-2}{4-5} \\
& m=\frac{-3}{-1} \\
& m=3
\end{aligned}
$$

Ex: $\left(\frac{9}{2}, 5\right)$ and $\left(\frac{1}{2},-3\right)$

$$
\begin{aligned}
& m=\frac{-3-5}{\frac{1}{2}-\frac{y}{2}} \\
& m=\frac{-8}{\frac{-8}{2}} \\
& m=\frac{-8}{-4} \\
& m=2
\end{aligned}
$$

Ex: $(-5,1)$ and $(-5,3)$

$$
\begin{aligned}
& m=\frac{3-1}{-5-(-5)} \\
& m=\frac{2}{0} \\
& m=\text { undefined }
\end{aligned}
$$

Ex: $(-2,3)$ and $(4,6)$
$m=\frac{6-3}{4-(-2)}$
$m=\frac{3}{6}$
$m=1 / 2$

Ex: $(3,4)$ and $(-2,4)$

$$
m=\frac{4-4}{-2-3}
$$

$$
m=\frac{0}{-5}
$$

$$
m=0
$$

-

Find the slope of the line graphed.

For each graph, use the formula $\frac{\text { rise }}{\text { rum }}$
Ex:

$$
m=5
$$

$m=-2$
*don't forget the slope is negative if the line goes down from left to right

Ex:

$$
m=\frac{2}{3}
$$

$$
m=-3
$$

*create points if necessary

Rate of Change: compares change in one quantity to change in another. (Slope for the real world) *Units are important! Typically expressed as a unit rate

Ex: Gas prices went from $\$ 3$ to $\$ 4$ between June $1^{\text {st }}$ of 2008 and August $1^{\text {st }}$ of that same year. Find the rate of change for the price of gas during that time period?

First, figure out what is x and what is y, based on independent (x) and dependent (y) variables. Price depends on the days, so price, dollars, is x and days is y.

Start by finding slope using the formula: $m=\frac{\Delta y}{\Delta x}$

$$
\begin{gathered}
m=\frac{\$ 1}{62 \text { days }} \quad \text { So the price increased by } \$ 1 \text { in } 62 \text { days } \\
m=\frac{\$ 0.016}{1 \text { day }} \text { Now find out how much the price changed in } 1 \text { day } \\
\text { by converting to a unit rate. }
\end{gathered}
$$

Ex: Gas prices then began to fall after this spike. They fell back to $\$ 2$ by November $19^{\text {th }}$. What is the rate of change of the price of gas for this time period?

Again, find the change in price compared to the change in number of days.

$$
\begin{aligned}
& m=\frac{-\$ 2}{111 \text { days }} \\
& m=\frac{-\$ 0.018}{1 \text { day }}
\end{aligned}
$$

Ex: Which time period had a greater rate of change? Why?
When the price fell back to $\$ 2$, the rate of change was greater. Even though it is negative, it fell at a faster rate.

Ex: The table below shows the cost of using a computer at the internet café for a given amount of time. Find the rate of change with respect to time.

Time (hrs)	2	4	6
Cost (\$)	7	14	21

x : hours, y : dollars
$m=\frac{\$ 7}{2 \text { hours }} \quad$ Rate of change: $\$ 3.50 /$ hour

