Name: \qquad
Notes
Algebra Section 4.2

Date: \qquad

Pages 215-221
Goal: "You will use a table to graph a linear equation"
"You will graph horizontal and vertical lines"
"Choose appropriate x values"

Vocabulary

Linear Equation: Any equation whose graph is a straight line.
If you graph it and it is not a straight line, you made an error.

Solution: ${ }^{* *}$ Any ordered pair (x, y) that makes the equation true when substituted.
** Any point on the line
** Note: Since a line continues on forever in both directions, and there are infinite points on a line, then a linear equation has infinite solutions.

Example: Which ordered pair is a solution to : $3 x-y=7 ;(3,4)$ or $(1,-4)$? Explain.

$$
(1,-4)
$$

$x=3$
$x=1$
$y=4$
$y=-4$
Plug x and y into the equation.

$$
\begin{aligned}
& 3 x-y=7 \\
& 3(3)-4=7 \\
& 9-4=7 \\
& 5=7 \\
& \text { No }
\end{aligned}
$$

$$
\begin{gathered}
3 x-y=7 \\
3(1)-(-4)=7 \\
3-(-4)=7 \\
7=7 \\
\text { Yes }
\end{gathered}
$$

Which one is a solution to the equation? $(1,-4)$

Try These:

1) Which ordered pair is a solution to: $2 x-6=3 y$; $(3,-2)$ or $(0,-2)$?

$$
(0,-2)
$$

2) Is $(4,-1)$ a solution to $x+2 y=5$? Why or why not?

No. When $x=4$ and $y=-1$ the equation is not true.
3) Are the following points solutions to the linear equation represented by the line graphed?
a) $(1,6)$
b) $(-3,2)$
a is a solution but b is not a solution

4) List three ordered pairs that are solutions to the equation $3 x-5=y$
$(-2,-11)$
$(1,-2)$
$(-1,-8)$
$(2,-1)$
$(0,-5)$
$(3,4)$
5) List four ordered pairs that are a solution to the equation $2 x+3=y$
$(-2,-1)$
$(-1,1)$
$(0,3)$
$(2,7)$
$(3,9)$
6) If x is 5 , what ordered pair is a solution to the equation $2 x+7=y$?

Graphing a linear equation by making a table:

1) Choose 5 appropriate values for x. Typically these values are:
**Do not choose these values if:

- There is a restriction on the domain. For example, if it says $x \geq 0$, then you must choose only positive values, or if dealing with time. Time cannot be negative.
-If after putting the equation in function form, the coefficient of x is a fraction, then it makes most sense to choose multiples of the denominator to avoid fractions.

2) Plug your 5 values into the function for x, find out what y is for each to complete your table.

x	-2	-1	0	1	2
y	-7	-5	-3	-1	1

$y=-3+2 x$
3) Graph the ordered pairs you now have from your table.

Try These:

1) Graph $y=2 x-2$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	-6	-4	-2	0	2

2) Graph $y=3 x-5$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	-11	-8	-5	-2	1

3) Graph $y=-3 x+1$ with a domain of $x \geq 0$

*which values can you not choose
for x ? Why? You cannot choose negative values because x is greater than or equal to 0 .

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}	1	-2	-5	-8	-11

*Identify the range...
$1,-2,-5,-8,-11$
4) Graph $y=\frac{1}{2} x+4 \quad{ }^{* *}$ which values should you pick for x ? Why?

5) Graph $y=2 x 1$ with a domain of $x \leq 0$ then identify the range.

\boldsymbol{x}	-12	-9	-6	-3	0
\boldsymbol{y}	-9	-7	-5	-3	-1

Range: $-9,-7,-5,-3,-1$
6) $\operatorname{Graph} y=-3$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	-3	-3	-3	-3	-3

7) $\operatorname{Graph} x=4$

8) The distance, d, in miles, that a runner travels is given by the function $d=6 t$ where t is the time (in hours) spent running. The runner plans to go for a 1.5 hour run. Set up a table and identify the domain and range of the function. Choose at least 4 values for t.

t	0	0.5	1	1.5
d	0	3	6	9

Domain: $1.5 \geq t \geq 0$
Range: $9 \geq d \geq 0$
9) For gas that costs $\$ 2$ per gallon, the equation $C=2 g$ gives the cost, C, in dollars for g gallons of gas. You plan to pump $\$ 10$ worth of gas. Set up a table and identify the domain and range.

g	0	1	2	3	4	5
C	0	2	4	6	8	10

Domain: $0 \leq g \leq 5$
Range: $0 \leq C \leq 10$

