Name:_____ Notes Algebra Section 4.2 Pages 215-221

Date:____

Goal: "You will use a table to graph a linear equation" "You will graph horizontal and vertical lines" "Choose appropriate *x* values"

Vocabulary

Linear Equation: Any <u>equation</u> whose graph is a <u>straight</u> line.

If you graph it and it is not a <u>straight</u> <u>line</u>, you made an error.

Solution: **Any <u>ordered pair</u> (*x*,*y*) that makes the <u>equation</u> true when substituted.

** Any point on the line

** Note: Since a line continues on forever in both directions, and there are infinite points on a

line, then a linear equation has infinite solutions.

Example: Which ordered pair is a solution to : 3x - y = 7; (3,4) or (1, -4)? Explain.

(3,4)		(1, -4)
<i>x</i> = 3	<i>x</i> = 1	
<i>y</i> = 4	<i>y</i> = -4	

Plug *x* and *y* into the equation.

Plug *x* and *y* into the equation.

3x - y = 7	3x - y = 7
3(3) - 4 = 7	3(1) - (-4) = 7
9 - 4 = 7	3 - (-4) = 7
5 = 7	7 = 7
No	Yes

Which one is a solution to the equation? (1, -4)

Try These: 1) Which ordered pair is a solution to: 2x - 6 = 3y; (3,-2) or (0,-2)?

(0, -2)

2) Is (4, -1) a solution to x + 2y = 5? Why or why not?

No. When *x*=4 and *y*=-1 the equation is not true.

3) Are the following points solutions to the linear equation represented by the line graphed?

- a) (1,6)
- b) (-3, 2)

a is a solution but b is not a solution

4) List three ordered pairs that are solutions to the equation 3x - 5 = y

(-2, -11)	(1, -2)	(4,7)	
(-1, -8)	(2, -1)	(5,10)	

(0, -5)	(3,4)	(6,13)

5) List four ordered pairs that are a solution to the equation 2x + 3 = y

- (-2,-1) (1,5) (4,11)
- (-1,1) (2,7) (5,13)
- (0,3) (3,9) (6,15)

6) If *x* is 5, what ordered pair is a solution to the equation 2x + 7 = y?

Graphing a linear equation by making a table:

1) Choose 5 appropriate values for *x*. Typically these values are:

**Do not choose these values if:

- There is a restriction on the <u>domain</u>. For example, if it says $x \ge 0$, then you must choose only <u>positive</u> values, or if dealing with <u>time</u>. Time cannot be <u>negative</u>.

-If after putting the equation in function form, the <u>coefficient</u> of *x* is a <u>fraction</u>, then it makes most sense to choose <u>multiples</u> of the <u>denominator</u> to avoid <u>fractions</u>.

2) Plug your 5 values into the function for *x*, find out what *y* is for each to complete your table.

-3 + 2x

х	-2	-1	0	1	2	<i>y</i> =
У	-7	-5	-3	-1	1	

3) Graph the ordered pairs you now have from your table.

Try These:

1) Graph	y = 2x - 2)
----------	------------	---

x	-2	-1	0	1	2
у	-6	-4	-2	0	2

2) Graph y = 3x - 5

X	-2	-1	0	1	2
У	-11	-8	-5	-2	1

3) Graph y = -3x + 1 with a domain of $x \ge 0$

*which values can you <u>**not**</u> choose

for x? Why? You cannot choose negative values because x is greater than or equal to 0.

X	0	1	2	3	4
у	1	-2	-5	-8	-11

*Identify the range... 1, -2, -5, -8, -11

**which values should you pick for x? Why?

0 and multiples of 2 to eliminate the fraction.

x	0	2	4	6	8
У	4	3	2	1	0

5) Graph y = 2x - 1 with a domain of $x \le 0$ then identify the range.

X	-12	-9	-6	-3	0
у	-9	-7	-5	-3	-1

Range: <u>-9, -7, -5, -3, -1</u>

7) Graph x = 4

8) The distance, *d*, in miles, that a runner travels is given by the function d = 6t where *t* is the time (in hours) spent running. The runner plans to go for a 1.5 hour run. Set up a table and identify the domain and range of the function. Choose at least 4 values for *t*.

t	0	0.5	1	1.5
d	0	3	6	9

Domain: $1.5 \ge t \ge 0$ Range: $9 \ge d \ge 0$

9) For gas that costs \$2 per gallon, the equation C = 2g gives the cost, C, in dollars for g gallons of gas. You plan to pump \$10 worth of gas. Set up a table and identify the domain and range.

g	0	1	2	3	4	5
С	0	2	4	6	8	10

Domain: $0 \le g \le 5$ Range: $0 \le C \le 10$