Name: \qquad
Notes
Algebra Section 4.2
Pages 215-221
Goal: "You will use a table to graph a linear equation"
"You will graph horizontal and vertical lines"
"Choose appropriate x values"

Vocabulary

Linear Equation: Any \qquad whose graph is a \qquad line.

If you graph it and it is not a \qquad
\qquad you made an error.

Solution: **Any \qquad (x, y) that makes the \qquad true when substituted.
** Any \qquad on the line
** Note: Since a \qquad continues on \qquad in \qquad and there are \qquad points on a line, then a \qquad has \qquad -.

Example: Which ordered pair is a solution to : $3 x-y=7 ;(3,4)$ or $(1,-4)$? Explain.

$$
\begin{array}{ll}
 \tag{3,4}\\
x= \\
y= & (1,-4) \\
\end{array}
$$

Plug x and y into the equation.

$$
3 x-y=7
$$

Which one is a solution to the equation? \qquad
Try These:

1) Which ordered pair is a solution to: $2 x-6=3 y$; $(3,-2)$ or $(0,-2)$?
2) Is $(4,-1)$ a solution to $x+2 y=5$? Why or why not?
3) Are the following points solutions to the linear equation represented by the line graphed?
a) $(1,6)$
b) $(-3,2)$

4) List three ordered pairs that are solutions to the equation $3 x-5=y$
5) List four ordered pairs that are a solution to the equation $2 x+3=y$
6) If x is 5 , what ordered pair is a solution to the equation $2 x+7=y$?

Graphing a linear equation by making a table:

1) Choose 5 appropriate values for x. Typically these values are:
**Do not choose these values if:

- There is a restriction on the \qquad . For example, if it says $x \geq 0$, then you must choose only
\qquad values, or if dealing with \qquad . Time cannot be \qquad .
-If after putting the equation in function form, the \qquad of x is a \qquad then it makes most sense to choose \qquad of the \qquad to avoid \qquad _.

2) Plug your 5 values into the function for x, find out what y is for each to complete your table.

x	-2	-1	0	1	2
y					

$y=-3+2 x$
3) Graph the ordered pairs you now have from your table.

Try These:

1) Graph $y=2 x-2$
2) Graph $y=3 x-5$

\boldsymbol{x}					
\boldsymbol{y}					

3) Graph $y=-3 x+1$ with a domain of $x \geq 0$
*which values can you not choose for x ? Why?

4) Graph $y=\frac{1}{2} x+4 \quad * *$ which values should you pick for x ? Why?

5) Graph $y=2 x 1$ with a domain of $x \leq 0$ then identify the range.

Range: \qquad
6) $\operatorname{Graph} y=-3$

\boldsymbol{x}					
\boldsymbol{y}					

7) $\operatorname{Graph} x=4$

8) The distance, d, in miles, that a runner travels is given by the function $d=6 t$ where t is the time (in hours) spent running. The runner plans to go for a 1.5 hour run. Set up a table and identify the domain and range of the function. Choose at least 4 values for t.

t				
d				

9) For gas that costs $\$ 2$ per gallon, the equation $C=2 g$ gives the cost, C, in dollars for g gallons of gas. You plan to pump $\$ 10$ worth of gas. Set up a table and identify the domain and range.

g				
C				

