Name: \qquad
Notes
Algebra Section 4.2
Pages 215-221
Goal: "You will use a table to graph a linear equation" "You will graph horizontal and vertical lines" "Choose appropriate x values"

Date: \qquad

Vocabulary

Linear Equation: Any equation whose graph is a straight line. Linear equations can be written in the form $\underline{A x+B y=C}$, which is called "Standard Form".

In this form, both A and B cannot be zero.

Solution: ${ }^{* *}$ Any ordered pair (x, y) that makes the equation true when substituted.
** Any point on the line
** Note: Since a line continues on forever in both directions, and there are infinite points on a line, then a linear equation has infinite solutions.

Example: Which ordered pair is a solution to : $3 x-y=7 ;(3,4)$ or $(1,-4)$? Explain.
$x=3$
$y=4$
Plug x and y into the equation.

$$
\begin{aligned}
& 3 x-y=7 \\
& 3(3)-4=7 \\
& 9-4=7 \\
& 5=7 \\
& \text { No }
\end{aligned}
$$

Which one is a solution to the equation? $(1,-4)$
Try These:

1) Which ordered pair is a solution to: $2 x-6=3 y$; $(3,-2)$ or $(0,-2)$?

$$
(0,-2)
$$

2) Tell whether $\left(4,-\frac{1}{2}\right)$ is a solution to $x+2 y=5$. Why or why not?
$4+2\left(-\frac{1}{2}\right)=5 \quad$ When the values are put in the equation is not true.
$4+(-1)=5$
$3=5$
No
3) Are the following points solutions to the linear equation represented by the line graphed?
a) $(1,6)$
b) $(-3,2)$
a is a solution but b is not a solution

4) List three ordered pairs that are solutions to the equation $3 x-5=y$
$(-2,-11)$
$(1,-2)$
$(-1,-8)$
$(0,-5)$
5) If x is 5, what ordered pair is a solution to the equation $2 x+4 y=8$?
$y=-\frac{1}{2} \quad\left(5,-\frac{1}{2}\right)$

Graphing a linear equation by making a table:

Make sure the equation is in Function form!

1) Rewrite the equation so it is in function form which means to isolate y

Example:

$$
\begin{array}{r}
-2 x+y=-3 \\
y=-3+2 x
\end{array}
$$

2) Choose 5 appropriate values for x. Typically these values are: $-2,-1,0,1,2$
**Do not choose these values if:

- There is a restriction on the domain. For example, if it says $x \geq 0$, then you must choose only positive values, or if dealing with time. Time cannot be negative.
-If after putting the equation in function form, the coefficient of x is a fraction, then it makes most sense to choose multiples of the denominator to avoid fractions.

3) Plug your 5 values into the function for x, find out what y is for each to complete your table.

x	-2	-1	0	1	2
y	-7	-5	-3	-1	1

4) Graph the ordered pairs you now have from your table.

Try These:

1) Graph $y=2-2 x$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	6	4	2	0	-2

2) Graph $y+3 x=2$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	8	5	2	-1	-4

3) Graph $y=-3 x+1$ with a domain of $x \geq 0$
*which values can you not choose for x ? Why? You cannot choose negative values because x is greater than or equal to 0 .

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}	1	-2	-5	-8	-11

*Identify the range...

$y \leq 1$
4) Graph $y=-\frac{1}{2} x+4$
${ }^{* *}$ which values should you pick for x ? Why?

0 and multiples of 2 to eliminate the fraction.

\boldsymbol{x}	0	2	4	6	8
\boldsymbol{y}	4	3	2	1	0

5) Graph $y=\frac{2}{3} x-1$ with a domain of $x \leq 0$ then identify the range.

\boldsymbol{x}	-12	-9	-6	-3	0
\boldsymbol{y}	-9	-7	-5	-3	-1

Range: $\quad y \leq-1$
6) $\operatorname{Graph} y=-3$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	-3	-3	-3	-3	-3

7) $\operatorname{Graph} x=4$

8) The distance, d, in miles, that a runner travels is given by the function $d=6 t$ where t is the time (in hours) spent running. The runner plans to go for a 1.5 hour run. Set up a table and identify the domain and range of the function. Choose at least 4 values for t.

Domain: $1.5 \geq t \geq 0$

t	0	0.5	1	1.5
d	0	3	6	9

Range: $9 \geq d \geq 0$
9) Suppose the same runner decides he wants to run 12 miles. Set up a new table with at least 3 values and identify the new domain and range.

t	0	1	2
d	0	6	12

Domain: $0 \leq t \leq 2$
Range: $0 \leq d \leq 12$
10) For gas that costs $\$ 2$ per gallon, the equation $C=2 g$ gives the cost, C, in dollars for g gallons of gas.

You plan to pump $\$ 10$ worth of gas. Set up a table and identify the domain and range.

g	0	1	2	3	4	5
C	0	2	4	6	8	10

Domain: $0 \leq g \leq 5$
Range: $0 \leq C \leq 10$

