Name:
Date: \qquad
Notes
Algebra Section 3.4
Pages 154-159
Goal: "I will solve equations with variable on both sides"
"I will decide if an equation has one solution, no solution, or an infinite number of solutions"

Backwards Alphabet

You still follow the backwards alphabet.
When you get to \qquad step, you need to get rid of one of the
\qquad by \qquad or \qquad it from both sides.

Examples:
$2 x+6=3 x+3$

$$
8-2 x=3 x-7
$$

$2 x+5=-8 x-3$

Try These:
Ex: $7-8 x=4 x-17$
Ex: $13+5 x=2 x-7$

Ex: $3 x+6=7 x-10$
Ex: $-2 x+3=3(2 x-7)$

Ex: $9 x-5=\frac{1}{4}(16 x+60)$
Ex: $4 x-5=\frac{1}{5}(5 x+20)$

Word Problems:

Ex: Sally is a spender. She got $\$ 240$ for her birthday. She spends $\$ 15$ a week for w weeks. Trevor is a saver. He has $\$ 40$ and is saving $\$ 10$ a week for w weeks by mowing lawns. In how many weeks will they have the same amount of money?

Expression for Sally: \qquad Expression for Trevor: \qquad
Equation: \qquad
Solve:

Answer (written in a full sentence): \qquad

Ex: A car dealership sold 78 new cars and 67 used cars this year. The number of new cars sold by the dealership has been increasing by 6 cars each year. The number of used cars sold by the dealership has been decreasing by 4 cars each year. If these trends continue, in how many years will the number of new cars sold be twice the number of used cars sold?

Expression for new cars: \qquad Expression for used cars: \qquad
Equation: \qquad
Solve:

Answer (written in a full sentence): \qquad

Ex: A music website sold 94 single songs and 67 albums today. The number of single downloads has been increasing by 22 each day and the number of album downloads has been decreasing by 5 each day. If these trends continue, in how many days will the number of single downloads be ten times the number of album downloads?

Expression for single songs: \qquad Expression for albums: \qquad
Equation: \qquad
Solve:

Answer (written in a full sentence): \qquad

Solutions

Solve means to \qquad all \qquad that make the \qquad true.

When solving equations with variable on both sides you can have:
\qquad solution (looks like $x=4$)
\qquad solution (looks like 4=7) (looks like 6=6)

Examples:
$6 x=3(2 x-1)$
$4 x+2=2(2 x+1)$
$2(x-4)=6 x+4$

This means:
This means:
This means:

Try These:
Ex: $3 x=3(x+4)$
Ex: $2 x+10=2(x+5)$

Ex: $5 x-6=(x-1) 5$
Ex: $4(3 x+2)=2(6 x+4)$

Ex: $3(4 x+6)=9(2 x+2)$
Ex: $-3(2 x-7)=6(4-x)$

Find the perimeter of the square.

