Date:_____

Notes

Algebra Section 3.1 Pages 134-140

Goal: "You will solve one-step equations"

Vocabulary:

Inverse Operations: Two operations that undo each other.

Examples: multiplication and division

addition and subtraction

square roots and squaring

Key Concepts:

To solve an equation you must <u>isolate</u> the <u>variable</u>.

Whatever you do to <u>one</u> <u>side</u> of the equation <u>you must do to the other side</u>.

You must **show** all your **work**!!!

Addition and Subtraction:

Examples:

$$x + 8 = 11$$

$$\frac{-8}{x} = 3$$

$$x - 10 = 15$$

$$+10 + 10$$

$$x = 25$$

Try These:

$$Ex: x + 7 = 4$$

 $x = -3$

$$Ex: x - 12 = 3$$

 $x=15$

$$Ex: x - 19 = 5$$

 $x=24$

$$Ex: x + 4 = 15$$

 $x=11$

$$Ex: x + 5 = -4$$

 $x = -9$

$$Ex: x - 12 = -3$$

$$Ex: 12 + x = -15$$
 $Ex: x - 10 = -45$ $x = -27$ $x = -35$

$$Ex: x - 10 = -4x$$

 $x = -35$

$$Ex: x + \frac{4}{5} = -9$$
$$x = -9\frac{4}{5}$$

$$Ex: x - 2\frac{1}{2} = -12$$
$$x = -9\frac{1}{2}$$

Ex:
$$1\frac{1}{3} + x = -2$$

 $x = -2\frac{1}{3}$

Ex:
$$x + \frac{4}{5} = -9$$
 Ex: $x - 2\frac{1}{2} = -12$ Ex: $1\frac{1}{3} + x = -1$ Ex: $x - 11\frac{2}{3} = -4$ $x = -9\frac{4}{5}$ $x = -9\frac{1}{2}$ $x = -2\frac{1}{3}$

$$Ex: x + 2.7 = -6.4$$
 $Ex: x - 3.9 = -2.2$

$$Ex: x - 3.9 = -2.2$$

$$Ex: 1.2 + x = -15.8$$
 $Ex: x - 3.8 = -16$

$$Ex: x - 3.8 = -16$$

$$x = -9.1$$

$$x=1.7$$

$$x = -17$$

$$x = -12.2$$

Multiplication and Division:

Examples:

$$3x = 18$$
 $\frac{x}{8} = 10$ $\frac{3}{5}x = 9$ $-x = 3$ $x = 6$ $x = 80$ $x = 15$ $x = -3$

Try These:

Ex:
$$-6x = 48$$
 Ex: $\frac{x}{-4} = -7$ Ex: $-\frac{2}{7}x = 4$ $x = -8$ $x = 28$ Ex: $x = -14$

Ex:
$$\frac{5}{6}w = 10$$
 Ex: $\frac{2}{3}p = 14$ Ex: $9 = -\frac{3}{4}n$ $x = 12$ $x = 21$ $x = -12$

Ex:
$$-8 = -\frac{4}{5}v$$
 Ex: $9x = 3$ Ex: $-8 = 2.5v$ $x = 10$ $x = \frac{1}{3}$ $x = -3.2$

Word Problems: (Write an equation and then solve)

Ex: In the 2004 Olympics, Shawn Crawford won the 200 meter dash. His winning time was 19.79 seconds. Find his average speed to the nearest tenth of a meter per second.

$$d = rt$$

200 = $r(19.79)$
 $r = 10.1 \text{ m/s}$

Ex: What if Crawford ran the 100 meter dash at the same speed as the 200? How long would it take him to run it?

$$d = rt$$

 $100 = 10.1t$
 $t = 9.9$ second

Ex: In the 2004 Olympics, Inge de Brujin won the 50-meter freestyle with a time of 24.58 seconds. What was her average speed?

$$d = rt$$

50 = $r(24.58)$
 $r = 2.03$ m/s