Name: \qquad Date: \qquad
Notes
Algebra Section 2.7
Pages 110-116
Goal: "Find the square root of real numbers"
"Compare real numbers"

Vocabulary:

Square Roots: One of two equal \qquad of a \qquad .
Radicand: The \qquad or \qquad inside a \qquad symbol.

Perfect Square: The \qquad of an \qquad (will not have a decimal). Irrational Number: A \qquad that cannot be written as a \qquad . It doesn't
\qquad or \qquad .

Real Numbers: The set of all \qquad and \qquad numbers.

$$
\text { radical symbol } \longrightarrow \sqrt{a} \longleftrightarrow \text { radicand }
$$

Evaluate:
$1^{2}=$
$2^{2}=$
$3^{2}=$
$4^{2}=$
$5^{2}=$
$6^{2}=$
$7^{2}=$
$8^{2}=$
$9^{2}=$
$10^{2}=$

List all of the perfect squares:
Evaluate:
$\sqrt{1}=$
$\sqrt{4}=$
$\sqrt{9}=$
$\sqrt{16}=$
$\sqrt{25}=$
$\sqrt{36}=$
$\sqrt{49}=$
$\sqrt{64}=$
$\sqrt{81}=$
$\sqrt{100}=$

Examples: $-\sqrt{81}$ "Take the opposite of $\sqrt{81}$.
$\pm \sqrt{9}$ "The $\sqrt{9}$ can be either positive or negative"

Evaluate each expression:

Ex: $-\sqrt{9}$
Ex: $\sqrt{25}$
Ex: $\pm \sqrt{64}$
Ex: $-\sqrt{81}$

Ex: $\pm \sqrt{100}$
Ex: $\sqrt{121}$
Ex: $-\sqrt{400}$
Ex: $\sqrt{16}$

Exponents with a negative base:

Examples:
$(-3)^{2}$
$(-2)^{3}$
$(-5)^{2}$
$(-3)^{4}$

Ex: $x^{2}=144$
Ex: $x^{2}=64$
Ex: $x^{2}=1$

Approximate Square Roots:

$\sqrt{40} 40$ is not a perfect square. The greatest perfect square less than 40 is 36 . The least perfect square greater than 40 is 49 .

$\sqrt{36}$	$\sqrt{40}$	$\sqrt{49}$
6		7

The $\sqrt{40}$ is between 6 and 7 .
Ex: $\sqrt{32}$
Ex: $\sqrt{103}$

Ex: $\sqrt{48}$
Ex: $\sqrt{5}$

Irrational Number:

Classify the following numbers using all names that apply:

Number	Rational?	Irrational?	Integer?	Whole?
$\sqrt{24}$				
$\sqrt{100}$				
$-\sqrt{81}$				
$-\sqrt{25}$				
$\sqrt{361}$				
$\sqrt{30}$				

