Name: \qquad Date: \qquad
Notes
Algebra Section 2.7
Pages 110-116
Goal: "Find the square root of real numbers"
"Compare real numbers"

Vocabulary:

Square Roots: One of two equal factors of a number
Radicand: The number or expression inside a radical symbol.
Perfect Square: The square of an integer (will not have a decimal)
Irrational Number: A number that cannot be written as a fraction. It doesn't end or repeat.
Real Numbers: The set of all rational and irrational numbers.
radical symbol $\longrightarrow \sqrt{a} \longleftrightarrow$ radicand

Example: $-\sqrt{81}$ "Take the opposite of $\sqrt{81}$.

Evaluate the expression:

Ex: $-\sqrt{9}$
Ex: $\sqrt{25}$
Ex: $\pm \sqrt{64}$
-3
5
± 8
Ex: $-\sqrt{81}$
Ex: $\pm \sqrt{100}$
± 10
Ex: $\sqrt{121}$
-9

Ex: $-\sqrt{400}$
-20
Ex: $\sqrt{160,000}$
Ex: $\sqrt{4900}$
400

Ex: $\sqrt{0.0081}$ 0.09

Ex: $\sqrt{0.000121}$
0.011

Solve: When asked to solve you are being asked for all possible values of \boldsymbol{x}.
Ex: $x^{2}=144$
$x= \pm 12$
Ex: $x^{2}=64$
$x= \pm 8$
Ex: $x^{2}=1$
$x= \pm 1$

Approximate Square Roots:

$\sqrt{40} 40$ is not a perfect square. The greatest perfect square less than 40 is 36 . The least perfect square greater than 40 is 49 .

$\sqrt{36}$	$\sqrt{40}$	$\sqrt{49}$
6		7

The $\sqrt{40}$ is between 6 and 7 .

Ex: $\sqrt{32}$
$\sqrt{25}<\sqrt{32}<\sqrt{36}$
$5<\sqrt{32}<6$
So $\sqrt{32}$ is between 5 and 6 (Closer to 6)

Ex: $\sqrt{103}$
$\sqrt{100}<\sqrt{103}<\sqrt{121}$
$10<\sqrt{103}<11$
Between 10 and 11. (Closer to 10)

$$
\begin{aligned}
& \text { Ex: }-\sqrt{48} \\
&-\sqrt{49}<-\sqrt{48}<-\sqrt{36} \\
&-7<-\sqrt{48}<-6
\end{aligned}
$$

$$
\mathbf{E x}:-\sqrt{350}
$$

Ex: The top of a folding table is a square whose area is 945 square inches. Approximate the side length of the tabletop to the nearest inch.
$A=s^{2}$
$945=s^{2}$
s is between 30 and 31, but closer to 31. So approximately 31 inches

Ex: The top of a square box has an area of 320 square inches. Approximate the side length of the box top to the nearest inch.

The side length is between 17 and 18 , but closer to 18 . So approximately 18 inches

Irrational Number:

Classify the following numbers using all names that apply: (Simplify first if possible, then classify)

Number	Rational?	Irrational?	Integer?	Whole?
$\sqrt{24}$	No	Yes	No	No
$\sqrt{100}$	Yes	No	Yes	Yes
$-\sqrt{81}$	Yes	No	Yes	No
$-\sqrt{25}$	Yes	No	Yes	No
$\sqrt{361}$	Yes	No	Yes	Yes
$\sqrt{30}$	No	Yes	No	No

Order the following numbers from least to greatest:

Ex: $\frac{4}{3},-\sqrt{5}, \sqrt{13},-2.5, \sqrt{9}$
$-2.5,-\sqrt{5}, \frac{4}{3}, \sqrt{9}, \sqrt{13}$
*positive numbers are bigger.

* 13 is bigger than 9 , so $\sqrt{13}$ must be bigger than $\sqrt{9}$
$* \sqrt{9}=3$, which is bigger than $\frac{4}{3}$ so this is the smallest
positive number
* Don't know $\sqrt{5}$ but 2.5 is the square root of the number you get when you multiply 2.5 times itself. (6.25)
So $-\sqrt{6.25}$ would be farther left on number line than $-\sqrt{5}$

Ex: $-\frac{9}{2}, 5.2,0, \sqrt{7}, 4.1,-\sqrt{20}$

$$
-\frac{9}{2},-\sqrt{20}, 0, \sqrt{7}, 4.1,5.2
$$

