Name:_____ Notes Algebra Section 2.6 Pages 103-108 Date:_____

Goal: "You will divide real numbers"

Vocabulary:

Multiplicative Inverse: The reciprocal of a nonzero number *a* written $\frac{1}{a}$.

Property:

Inverse Property of Multiplication: The <u>product</u> of a <u>nonzero</u> number and its <u>multiplicative</u> <u>Inverse</u> is <u>one.</u>

Example:

The multiplicative inverse of $-\frac{1}{5}$ is -5 because $-\frac{1}{5} \cdot (-5) = 1$ The multiplicative inverse of $-\frac{6}{7}$ is $-\frac{7}{6}$ because $-\frac{6}{7} \cdot \left(-\frac{7}{6}\right) = 1$

Try These:

What is the multiplicative inverse of 7 ?	$\frac{1}{7}$
What is the multiplicative inverse of -8 ?	$-\frac{1}{8}$
What is the multiplicative invers of $-\frac{2}{2}$?	3
3	2

Dividing Positive and Negative Numbers:

Negative + Negative = Positive Negative + Positive = Negative

Positive + Negative = Negative

Examples:

 $-20 \div \left(-\frac{5}{3}\right) = 12 \qquad \qquad -\frac{3}{8} \div \frac{3}{10} = -1\frac{1}{4} \qquad \qquad 16 \div (-4) = -4$

Try These:

- $-35 \div 7 = -5$ $12 \div (-3) = -4$ $-18 \div (-6) = 3$
- $-\frac{5}{2} \div (-7) = \frac{5}{14} \qquad 1.2 \div (-3) = -0.4 \qquad \frac{1}{2} \div (-4) = -\frac{1}{8}$
- $7 \div (-2) = -3\frac{1}{2} \qquad -4 \div (-8) = \frac{1}{2} \qquad -\frac{3}{4} \div \left(-\frac{3}{8}\right) = 2$

Finding the Mean:

Example: The table gives the daily minimum temperatures (in degrees Fahrenheit) in Barrow, Alaska, for the first 5 days of February 2004. Find the mean daily minimum temperature.

Day in February	1	2	3	4	5
Minimum Temperature (F°)	-21	-29	-39	-39	-22

Mean: $\frac{-21+(-29)+(-39)+(-39)+(-22)}{5} = \frac{-150}{5} = -30^{\circ}F$

Try This:

Find the mean maximum temperature (in degrees Fahrenheit) in Barrow, Alaska, for the first 5 days of February 2004.

Day in February	1	2	3	4	5
Maximum Temperature (F°)	-3	-20	-21	-22	-18

-16.8°F

Simplifying an Expression (Division):

Example: $\frac{36x-24}{6} = \frac{1}{6}(36x-24) = 6x-4$

*Note: Each term in the numerator is divided by the denominator.

Try These:

20 <i>x</i> +15	2 <i>x</i> -8	-6 <i>y</i> +18	-10z-20
5	-4	3	-5
4x + 3	$-\frac{1}{2}x+2$	-2y + 6	2z + 4