\qquad
Notes
Algebra Section 12.4
Pages 794-800
Goal: "You will simplify rational expressions."

Rational expression: an expression that can be written as a ratio of 2 polynomials, where the denominator is not 0

Excluded values: numbers that would make the rational expression undefined (the denominator $=0$)

Find excluded values for each rational expression:
Ex: $\frac{x+8}{10 x}$
Ex: $\frac{5}{2 y+14}$
Ex: $\frac{4 v}{v^{2}-9}$
$x \neq 0$

$$
2 y+14 \neq 0
$$

$$
y \neq-7
$$

$$
\begin{aligned}
v^{2}-9 & \neq 0 \\
v & \neq \pm 3
\end{aligned}
$$

$\mathbf{E x}: \frac{7 w+2}{8 w^{2}+w+5}$
Ex: $\frac{x+2}{3 x-5}$
Ex: $\frac{2}{5 y^{2}+2 y+3}$
None

$$
x \neq \frac{5}{3}
$$

None

Ex: $\frac{n-6}{2 n^{2}-5 n-12}$

$$
\begin{aligned}
& (2 n-3)(n-4) \\
& n \neq \frac{3}{2}, n \neq 4
\end{aligned}
$$

$$
(m+2)(m-2)
$$

$$
m \neq \pm 2
$$

Simplest Form: a rational expression is in simplest form when the numerator and denominator have no common factors other than 1

Simplify each rational expression and state the excluded values.
Ex: $\frac{r}{2 r}$
Ex: $\frac{5 x}{5(x+2)}$
$\mathbf{E x}: \frac{6 m^{3}-12 m^{2}}{18 m^{2}}$
$r \neq 0, \frac{1}{2}$
$x \neq-2, \frac{x}{x+2}$
$m \neq 0, \frac{m-2}{3}$

Ex: $\frac{y}{7-y}$
$\mathbf{E x}: \frac{4 a^{3}}{22 a^{6}}$
Ex: $\frac{2 c}{c+5}$
$y \neq 7$, simplfied
$a \neq 0, \frac{2}{11 a^{3}}$
$c \neq-5$, simplified
$\mathbf{E x}: \frac{2 s^{2}+8 s}{3 s+12}$
Ex: $\frac{8 x}{8 x^{3}+16 x^{2}}$
$s \neq-4, \frac{2 s}{3}$
$x \neq 0$ or $-2, \frac{1}{x^{2}+2 x}$

Simplify by factoring into binomials and state excluded values:
Ex: $\frac{x^{2}-3 x-10}{x^{2}+6 x+8}$

$$
\begin{aligned}
& \text { Ex: } \frac{x^{2}+x-12}{x^{2}-x-6} \\
& \frac{(x-3)(x+4)}{(x-3)(x+2)}, x \neq 3 \text { or }-2
\end{aligned}
$$

$\frac{(x-5)(x+2)}{(x+4)(x+2)}, x \neq-4$ or -2
$\frac{(x-5)}{(x+4)}$

$$
\frac{(x+4)}{(x+2)}
$$

Ex: $\frac{x^{2}+3 x+2}{x^{2}+7 x+10}$
Ex: $\frac{y^{2}-64}{y^{2}-16 y+64}$
$\frac{(x+2)(x+1)}{(x+5)(x+2)}, x \neq-5$ or -2
$\frac{x+1}{x+5}$
$\frac{(y-8)(y+8)}{(y-8)(y-8)}, y \neq 8$
$\frac{y+8}{y-8}$

Recognize Opposites:

Ex: $\frac{x^{2}-7 x+12}{16-x^{2}}$
Ex: $\frac{5+4 z-z^{2}}{z^{2}-3 z-10}$
$\frac{(x-4)(x-3)}{(4-x)(4+x)}$
$-\frac{x-3}{x+4}$

$$
\begin{aligned}
& \frac{(5-z)(1+z)}{(z-5)(z+2)} \\
& -\frac{z+1}{z+2}
\end{aligned}
$$

Ex: $\frac{x^{2}-7 x+10}{25-x^{2}}$
$\frac{(x-5)(x-2)}{(5-x)(5+x)}$
$-\frac{x-2}{x+5}$

