Name:_____ Notes Algebra Section 10.4 Pages 652-658

To be able to use square roots the quadratic must be in the form: $y = x^2 + c$

Which means b = 0

*Want to isolate x^2 , which when it is isolate is a new equation called: $x^2 = d$

****THINGS TO NOTICE****

- If $x^2 = d$ and d > 0, then there are 2 solutions, the positive and negative square roots of d
- If $x^2 = d$ and d = 0, then there is one solution, x = 0
- If $x^2 = d$ and d < 0, then there are no solutions because you cannot take the square root of a negative number

Solve:

- Ex: $2x^2 = 8$ $x^2 = 4$ $x = \pm 2$ Ex: $m^2 - 18 = -18$ $m^2 = 0$ m = 0Ex: $b^2 + 12 = 5$ $b^2 = -7$ No Solution
- **Ex:** $3x^2 = 27$ **Ex:** $p^2 + 12 = 12$ **Ex:** $a^2 3 = -4$
 - $x = \pm 3$ p = 0 No Solution
- **Ex:** $c^2 25 = 0$ **Ex:** $5w^2 + 12 = 8$ **Ex:** $2x^2 + 11 = 11$
 - $c = \pm 5$ No solution x = 0
- Ex: $4z^2 = 9$ Ex: $25s^2 = 49$ Ex: $9m^2 = 100$ Ex: $9m^2 = 100$
 - $z = \pm \frac{3}{2}$ $s = \pm \frac{7}{5}$ $m = \pm \frac{10}{3}$

Ex: $25x^2 = 16$	
$x = \pm \frac{4}{5}$	

Ex: $49b^2 + 64 = 0$ No solution Date:___

Approximate the solutions using a calculator. (Round to the nearest hundredth)

Ex:
$$3x^2 - 11 = 7$$

 $x = \pm 2.45$
Ex: $2x^2 - 10 = 6$
 $x = \pm 2.83$
Ex: $x^2 + 4 = 14$
 $x = \pm 3.16$

Ex:
$$3k^2 - 1 = 0$$
 Ex: $2p^2 - 7 = 2$

$$k = \pm 0.58$$
 $p = \pm 2.12$

Solve:

Ex: $6(x-4)^2 = 42$	Ex: $4(x+6)^2 = 32$	Ex: $2(x-2)^2 = 18$
$(x-4)^2 = 7$	$(x+6)^2 = 8$	$(x-2)^2 = 9$
$x - 4 = \pm 2.65$	$x + 6 = \pm 2.83$	$x - 2 = \pm 3$
x = -2.65 + 4 = 1.35	x = -3.17 and -8.83	x = 5 and -1
x = 2.65 + 4 = 6.65		

Ex:
$$4(q-3)^2 = 28$$
 Ex: $3(t+5)^2 = 24$

$$q = 0.35$$
 and 5.65 $t = -7.83$ and -2.17

Ex: During a hockey game a remote-controlled blimp flies above the crowd and drops a numbered tennis ball. The number corresponds to a prize. Use the diagram to find the amount of time the ball is in the air.

 $h = -16t^{2} + 45$ $17 = -16t^{2} + 45$ $-28 = -16t^{2}$ $\frac{7}{4} = t^{2}$ t = 1.32 seconds

