\qquad
Notes
Algebra Section 10.4
Pages 652-658
To be able to use square roots the quadratic must be in the form: $y=x^{2}+c$
Which means $b=0$

*Want to isolate x^{2}, which when it is isolate is a new equation called: $x^{2}=d$

THINGS TO NOTICE

- If $x^{2}=d$ and $d>0$, then there are 2 solutions, the positive and negative square roots of d
- If $x^{2}=d$ and $d=0$, then there is one solution, $x=0$
- If $x^{2}=d$ and $d<0$, then there are no solutions because you cannot take the square root of a negative number

Solve:

Ex: $2 x^{2}=8$

$$
\begin{aligned}
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

Ex: $m^{2}-18=-18$

$$
m^{2}=0
$$

$$
m=0
$$

Ex: $b^{2}+12=5$
$b^{2}=-7$
No Solution

Ex: $3 x^{2}=27$

$$
x= \pm 3
$$

Ex: $p^{2}+12=12$
$p=0$
Ex: $a^{2}-3=-4$
No Solution

Ex: $c^{2}-25=0$

$$
c= \pm 5
$$

Ex: $5 w^{2}+12=8$
No solution

Ex: $25 s^{2}=49$
$s= \pm \frac{7}{5}$
Ex: $9 m^{2}=100$
$m= \pm \frac{10}{3}$

Ex: $25 x^{2}=16$
$x= \pm \frac{4}{5}$

Ex: $49 b^{2}+64=0$
No solution
Ex: $3 x^{2}-11=7$

$$
x= \pm 2.45
$$

Ex: $2 x^{2}-10=6$
$x= \pm 2.83$
Ex: $x^{2}+4=14$
$x= \pm 3.16$

Ex: $3 k^{2}-1=0$

$$
k= \pm 0.58
$$

Ex: $2 p^{2}-7=2$

$$
p= \pm 2.12
$$

Solve:

Ex: $6(x-4)^{2}=42$

$$
\begin{aligned}
& (x-4)^{2}=7 \\
& x-4= \pm 2.65 \\
& x=-2.65+4=1.35 \\
& x=2.65+4=6.65
\end{aligned}
$$

Ex: $4(x+6)^{2}=32$

$$
\begin{aligned}
& (x+6)^{2}=8 \\
& x+6= \pm 2.83 \\
& x=-3.17 \text { and }-8.83
\end{aligned}
$$

Ex: $2(x-2)^{2}=18$

$$
\begin{aligned}
& (x-2)^{2}=9 \\
& x-2= \pm 3 \\
& x=5 \text { and }-1
\end{aligned}
$$

Ex: $4(q-3)^{2}=28$

$$
q=0.35 \text { and } 5.65
$$

Ex: $3(t+5)^{2}=24$

$$
t=-7.83 \text { and }-2.17
$$

Ex: During a hockey game a remote-controlled blimp flies above the crowd and drops a numbered tennis ball. The number corresponds to a prize. Use the diagram to find the amount of time the ball is in the air.
$h=-16 t^{2}+45$
$17=-16 t^{2}+45$
$-28=-16 t^{2}$
$\frac{7}{4}=t^{2}$
$t=1.32$ seconds

