\qquad
Notes
Algebra Section 10.4
Pages 652-658
Goal: "Solve quadratic equations finding square roots"

THINGS TO NOTICE

- If $x^{2}=d$ and $d>0$, then there are \qquad solutions, the \qquad and \qquad square roots.
- If $x^{2}=d$ and $d=0$, then there is \qquad solution. $x=0$
- If $x^{2}=d$ and $d<0$, then there are \qquad
\qquad because you cannot take the square root of a \qquad number.

Solve:

Ex: $2 x^{2}=8$
Ex: $m^{2}-18=-18$
Ex: $b^{2}+12=5$

Ex: $3 x^{2}=27$
Ex: $p^{2}+12=12$
Ex: $a^{2}-3=-4$

Ex: $c^{2}-25=0$
Ex: $5 w^{2}+12=8$
Ex: $2 x^{2}+11=11$

Ex: $4 z^{2}=9$
Ex: $25 s^{2}=49$
Ex: $9 m^{2}=100$

Ex: $25 x^{2}=16$
Ex: $49 b^{2}+64=0$
Ex: $3 x^{2}-11=7$
Ex: $2 x^{2}-10=6$
Ex: $x^{2}+4=14$

Ex: $3 k^{2}-1=0$
Ex: $2 p^{2}-7=2$

Solve:

Ex: $6(x-4)^{2}=42$
Ex: $4(x+6)^{2}=32$
Ex: $2(x-2)^{2}=18$

Ex: $4(q-3)^{2}=28$
Ex: $3(t+5)^{2}=24$

Ex: During a hockey game a remote-controlled blimp flies above the crowd and drops a numbered tennis ball. The number corresponds to a prize. Use the diagram to find the amount of time the ball is in the air.

