Name:_____ Notes Algebra Section 10.3 Pages 643-649

Goal: "Solve quadratic equations by graphing."

RECALL

A <u>quadratic equation</u> is: $y = ax^2 + bx + c$

A solution to a quadratic equation can also be called a: "Root"

Solutions or **______** ROOTS______ are the values of *x* so the quadratic equation is equal to: zero

**We already know how to solve a quadratic equation by: Factoring

Since we know that solutions occur when y = 0, how can you identify solutions on a graph then? Look for the values of x when y = 0. Y = 0 on the x-axis. So we are looking for the points where the parabola crosses the x-axis

Ex: The graph below models the parabola formed by the quadratic equation $y = x^2 - 6x + 5$. What do you think the solutions are? Why?

Date:_

Solve the following quadratic equations by graphing:

$$x = -1$$
 and $x = 3$

x = 1

Ex: $x^2 + 4x = 5$	Ex: $-x^2 - 6x = 9$	Ex: $x^2 + 4x = -6$		
x = -5 and $x = 1$	<i>x</i> = -3	No solution		
Ex: $x^2 + x = -1$	Ex: $-x^2 + 6x = 9$			
No Solution	<i>x</i> = 3			

Find the zeros of the function.

Ex: $f(x) = x^2 + 6x - 7$

$$x = 1, x = -7$$

1. Graph

2. Find the two integers the root falls between

3. Make a table with increments of 0.1 for *x* values. Look for a change in signs since 0 falls between positive and negative numbers.

x	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1	
у	—	—	—	-	_	_	-	0.24	0.61	
	1.79	1.56	1.31	1.04	0.75	0.44	0.11			
x	-3.9	-3.8	-3.7	-3.6	-3.5	-3.4	-3.3	-3.2	-3.1	
у	0.61	0.24	_	_	_	_	_	_	_	
			0.11	0.44	0.75	1.04	1.31	1.56	1.79	

Use a graphing calculator to solve.

Ex:
$$f(x) = x^2 + x - 6$$

x = -3 and x = 2

Ex:
$$f(x) = x^2 + 7x + 6$$

x = -1 and x = -6

Ex: $f(x) = x^2 + 4x + 1$

x is approx.. –0.3 and –3.7

Ex:
$$f(x) = -x^2 + 2x + 2$$

$$x = -0.7$$
 and $x = 2.7$

Ex: An athlete throws a shot put with an initial vertical velocity of 40 ft/s.

a) Write an equation that models the height of the shot put as a function of the time it is in the air.

$h = -16t^2 + 40t$

b) Use the equation to find the time the shot put is in the air.

About 2.5 seconds

Ex: A baseball player throws a ball into the air with an initial vertical velocity of 32 ft/s and is released at a height of 5 feet.

a) Write an equation that models the height of the ball based on time in the air.

$h = -16t^2 + 32t + 5$

b) Find out how long the ball is in the air.

About 2.1 seconds