Name: $\qquad$ Date: $\qquad$
Notes
Algebra Section 10.3
Pages 643-649
Goal: "Solve quadratic equations by graphing."
**RECALL**
A quadratic equation is: $y=a x^{2}+b x+c$

A solution to a quadratic equation can also be called a: "Root"

Solutions or $\qquad$ ROOTS $\qquad$ are the values of $x$ so the quadratic equation is equal to: zero
**We already know how to solve a quadratic equation by: Factoring

Since we know that solutions occur when $y=0$, how can you identify solutions on a graph then?
Look for the values of $x$ when $y=0 . Y=0$ on the $x$-axis. So we are looking for the points where the parabola crosses the $x$-axis

Ex: The graph below models the parabola formed by the quadratic equation $y=x^{2}-6 x+5$. What do you think the solutions are? Why?


Solutions: $x=1$ and $x=5$

Solve the following quadratic equations by graphing:

Ex: $x^{2}-2 x=3$
$x=-1$ and $x=3$


Ex: $x^{2}+7=4 x$

No Solution


Ex: $-x^{2}+2 x=1$
$x=1$


$$
\begin{aligned}
& \text { Ex: } x^{2}-6 x+8=0 \\
& x=2 \text { and } x=4
\end{aligned}
$$



## Graph the following quadratic equations on a graphing calculator and identify the solutions.

Ex: $x^{2}+4 x=5$
Ex: $-x^{2}-6 x=9$
Ex: $x^{2}+4 x=-6$
$x=-5$ and $x=1$
$x=-3$
No solution

Ex: $x^{2}+x=-1$
No Solution
Ex: $-x^{2}+6 x=9$
$x=3$

## Find the zeros of the function.

Ex: $f(x)=x^{2}+6 x-7$
$x=1, x=-7$


Approximate zeros to the nearest tenth:

Ex: $f(x)=x^{2}+7 x+6$
$x=-1$ and $x=-6$


Ex: $f(x)=x^{2}+4 x+1$

1. Graph
2. Find the two integers the root falls between
3. Make a table with increments of 0.1 for $\boldsymbol{x}$ values. Look for a change in signs since 0 falls between positive and negative numbers.

| $\boldsymbol{x}$ | -0.9 | -0.8 | -0.7 | -0.6 | -0.5 | -0.4 | -0.3 | -0.2 | -0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | - | - | - | - | - | - | - | 0.24 | 0.61 |
|  | 1.79 | 1.56 | 1.31 | 1.04 | 0.75 | 0.44 | 0.11 |  |  |



| $\boldsymbol{x}$ | -3.9 | -3.8 | -3.7 | -3.6 | -3.5 | -3.4 | -3.3 | -3.2 | -3.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 0.61 | 0.24 | - | - | - | - | - | - | - |
|  |  |  | 0.11 | 0.44 | 0.75 | 1.04 | 1.31 | 1.56 | 1.79 |

$x$ is approx.. -0.3 and -3.7
Use a graphing calculator to solve.

Ex: $f(x)=x^{2}+x-6$
$x=-3$ and $x=2$

$$
\mathbf{E x}: f(x)=-x^{2}+2 x+2
$$

$$
x=-0.7 \text { and } x=2.7
$$

Ex: An athlete throws a shot put with an initial vertical velocity of $40 \mathrm{ft} / \mathrm{s}$.
a) Write an equation that models the height of the shot put as a function of the time it is in the air. $h=-16 t^{2}+40 t$
b) Use the equation to find the time the shot put is in the air.

About 2.5 seconds

Ex: A baseball player throws a ball into the air with an initial vertical velocity of $32 \mathrm{ft} / \mathrm{s}$ and is released at a height of 5 feet.
a) Write an equation that models the height of the ball based on time in the air.
$h=-16 t^{2}+32 t+5$
b) Find out how long the ball is in the air.

About 2.1 seconds

