Name: \qquad
\qquad
Notes
Algebra Section 1.6
Pages 35-40
Goal: "I will be able to write a function as a rule and as a table" "I will identify the domain and range of a function"

Vocabulary:

Function: An \qquad for which any \qquad that can be plugged into the equation will yield exactly \qquad .

Domain: A set of all possible \qquad values (\qquad
Range: A set of all possible \qquad values \qquad
Dependent Variable: The \qquad value. It is \qquad on the
\qquad value.

Independent Variable: The \qquad value. It is \qquad dependent on other values.

Example:

The input-output table shows the cost of various amounts of regular unleaded gas from the same pump. Identify the domain and range of the function.

Input (gallons)	10	12	13	17
Output (dollars)	19.99	23.99	25.99	33.98

Try These:
a) Identify the domain and range of the given function:

Input	1	3	4	8
Output	5	11	14	26

Domain: \qquad Range: \qquad
b) Identify the domain and range of the given function:

Input	0	1	2	4
Output	5	2	2	1

Domain: \qquad Range: \qquad
**Why is it a function even though ' 2 ' appears twice in the output?
Every \qquad value has exactly \qquad y value. The y value can have \qquad
\qquad
\qquad x value.

Decide if the following relationships represent a function. Explain why or why not. If yes, identify the domain and range.
a) Input
Output

Function: yes or no?
If yes:
Domain \qquad
Range \qquad
b)

Input	Output
0	0
1	2
4	8
6	12

Function: yes or no?
If yes: Domain \qquad Range \qquad
c)

Input	3	6	9	12
Output	1	2	2	1

Function: yes or no?
If yes:
Domain \qquad
Range \qquad
d)

Input	2	2	4	7
Output	0	1	2	3

Function: yes or no?
If yes:
Domain \qquad
Range \qquad

Ways to Represent Functions

Example:

Verbal Rule

The output is 3 more than the input.
,

Equation

$$
y=3+x
$$

Table

$\operatorname{Input}(x)$	0	1	2	3
Output (y)	3	4	5	6

Plug in values to make the table

Try These:
a) The domain of the function $\boldsymbol{y}=\mathbf{2 x}$ is $0,2,5,7,8$.

Make a table for the function. Then identify the range.
The domain is the input so put $0,2,5,7,8$, in the input row.
Plug these values into the function to find the output.

Input					
Output					

$y=2 x$ for $x=0 \quad y=2 x$ for $x=2 \quad y=2 x$ for $x=5$

$$
y=2 x \text { for } x=7
$$

$$
y=2 x \text { for } x=8
$$

b) Make a table for the function $\boldsymbol{y}=\boldsymbol{x}-\mathbf{5}$ with a domain of $10,12,15,18,29$. Then identify the range.

The domain is the input so put $10,12,15,18,29$, in the input row.
Then plug these values into the function to find the output.

Input					
Output					

Range: \qquad

Writing a Rule for a Function:

Basic Premise: If you have x, how do you get y ?
a)
b)

Input	0	1	4	6	10
Output	2	3	6	8	12

Input	1	2	4	7	9
Output	0	1	3	6	8

Rule: \qquad Rule \qquad
c)

Input	1	3	5	7	9
Output	1	5	9	13	17

Rule: \qquad

Write a rule for the following functions.

a)

Input	0	3	6	9	12
Output	5	14	23	32	41

Rule: \qquad
c) You are buying concert tickets that cost $\$ 15$ each. You can buy up to six tickets.
a) Write a rule for the amount you spend (in dollars) (A) as a function of the number of tickets you buy (t).
b) Make a table to identify the range.

Number of Tickets n							
Amount (dollars) A							

c) Identify the independent and dependent variables. Think about......

Does the number of tickets bought depend on the amount you spent? or Does the amount you spend depend on the number of tickets you buy?
d) Identify the domain and range. Use the table above. Remember that you can buy up to six tickets only.

Domain \qquad
Range \qquad
d) At a community center, art lessons are offered at night. The fee is $\$ 12$ per lesson. You plan to attend up to 5 lessons.
a) Make a table to identify the range.

Number of Lessons n						
Amount (dollars) A						

b) Write a rule for the amount you spend (in dollars) as a function of the number of lessons you attend. How do you find the total amount spent?

$$
A=
$$

c) Identify the independent and dependent variables. Think about......

Does the amount you spend depend on the number of lessons you take? Or Does the number of lessons you take depend on how much you spend?
d) Identify the domain and range.

Domain \qquad
Range \qquad

