Name:	Date:
Notes	
Algebra Section 1.4	
Pages 21-26	
Goals: "I will transl	ate verbal sentences into equations or inequalities"
"I will decide	if a given value is a solution to an equation or inequality"
Vocabulary:	
Inequality: An oper	sentence that contains one of these symbols
Writing an equation	<u>n or inequality</u>
Math Verbs:	
Let's look at some in	equalities.
Example: x	> 6
What do we know?	x is greater than 6
Can x be exactly 6?	No. There is not a \geq sign.
<u>Try These</u> :	
a) $y < 12$	
What do we know?	<i>y</i> is12
Can y be exactly 12?	
b) $b \ge 2$	
What do we know?	<i>b</i> is2
Can b be exactly 2?	

<u>Try These:</u>			
Write the equation or inequality. For each inequality give or	ne value 1	that will make th	ne
statement true. The first two have been done for you.			
"A number x is 5"		<u>x=5</u>	
"6 is more than a number k "	<u>6>k</u>	<i>k</i> can be 2	
"A number <i>n</i> is at least 11"			
"A number <i>m</i> is fewer than 14"			
A number in is lewer than 14			
"23 is no more than the number <i>a</i> "			
<u>Try These:</u> These are a bit more challenging.			
Write the equation or inequality. For each inequality give at	least on	e value that will	make
the statement true.			
Hint: Write the expression(s) first and then choose the corr	ect sign.		
"The difference between 12 and a number k is 8."			
"The quotient of a number p and 12 is 3."			
The quotient of a number p and 12 is 3.			-
"The quotient of a number p and 12 is at least 3."			

"The sum of a number y and 15 is at most 5."

"The product of 7 and a number q is more than 10."

"The sum of a number and 12 is less than 18"

"Your math grade (a) needs to be at least a 7!	5″

"The building (b) needs to be at greater than 80 feet tall"

"Your height (h) needs to be at least 48 inches to get on the ride" ______

"The cat (c) should eat no more than 2 cups of food a day"

"You need to make (p) more than \$120 to pay off your debt" _____

Solution (of an equation or inequality):

Determine if the number listed is a SOLUTION to the equation or inequality.

Example 1:

$$3 + 2x = 15$$
 for $x=3$

Input the value $3 + 2 \cdot 3 = 15$ x=3

Simplify 3 + 6 = 15 Always follow order of operations!!

9 = 15

Check Does 9=15? No! This **is not** a solution of the equation!

Example 2:

$$12 < 4x - 5$$
 for $x = 7$

Input the value $12 < 4 \cdot 7 - 5$ x=7

Simplify 12 < 28 - 5 Always follow order of operations!!

12 < 23

Check Is 12<23? Yes! This **is** a solution of the inequality.

<u>Try These:</u>

a)
$$8 - 2x = 2$$
 $x = 3$

b)
$$2z + 5 \ge 12 z = 1$$

Input:

Simplify:

Input:

Simplify:

Yes or No?

c)
$$4 < 7 - q q = 3$$

d)
$$18 > 2x - 3$$
 $x=4$

Yes or No?

Yes or No?

Check whether the given number is a solution: (the number given comes after the semi-colon)

a)
$$9 - x = 4$$
; 5 $(x=5)$

$$(x=5)$$

b)
$$b + 5 < 15; 7$$
 ($b=7$)

$$(b=7)$$

Yes or No?

Yes or No?

Challenge:

Combining inequalities:

There will be two signs. Give at least one value that could be a solution of the inequality

Example:

A number n is greater than 5 and less than 13

Hint: Put the variable in the middle and the two numbers on either side. Then put in the signs.

Try These:

- a) x is greater than 3 and less than 9
- b) A number y is no less than 5 and no more than 13
- c) A number q is at least 5 and less than 17
- d) A number g is more than 5 and no less than 18
- e) A number *n* is at least 1 and less than 2
- f) A number d is at least 7 and at most 10

Word Problems:

a) The last time you and 3 friends went to a mountain bike park, you had a coupon for \$10 off
the total purchase. Your final total was \$17 for 4 tickets (after the \$10 was taken off).
How much was the bill before the \$10 was taken off?
How much did each ticket cost?
b) A basketball player scored 351 points last year. She wants to beat her points from last year.
If the player plays 18 games this year, will an average of 20 points per game be enough to beat
least year's total?
How many points did she score last year?
How many points did she score this year?
Is that better than last year's total?
c) Tyler would like to make no less than \$610 selling coffee mugs online. If he sells 28 mugs
for \$22 each, will he achieve his goal?
What is his goal?
How much did he make selling mugs online?
Is this more than his goal?