Name:	Date:	
Notes		
Algebra Section 1.4		
Pages 21-26		
Goals: "I will translate verbal sentences into equa	tions or inequalities"	

"I will decide if a given value is a solution to an equation or inequality"

Vocabulary:

Inequality: An open sentence that contains one of these symbols $\leq, \geq, >, <$

Writing an equation or inequality

Math Verbs: The same as	more than	less than	at least	at most	
equal to	fewer than	no more than	no less than	greater than	

<u>Try These:</u>

Write the equation or inequality. For each inequality give at least one value that will make the statement true.

"The difference between 12 and a number k is 8."	12 - k = 8	
"The quotient of a number p and 12 is 3."	$\frac{p}{12} = 3$	
"The quotient of a number p and 12 is at least 3."	$\frac{p}{12} \ge 3$	<i>p</i> can be 48
"The sum of a number y and 15 is at most 5."	$y + 15 \le 5$	<i>y</i> can be -15
"The product of 7 and a number q is more than 10."	7 <i>q</i> > 10	<i>q</i> can be 2
"The sum of a number <i>n</i> and 12 is less than 18"	n + 12 < 18	<i>n</i> can be 3
"Your math grade, g, needs to be at least a 75"	$g \ge 75$	g can be 75

Solution (of an equation or inequality):

Determine if the number listed is a SOLUTION to the equation or inequality. Example 1:

	3 + 2x = 15 $x=3$
Input the value Simplify	$3 + 2 \cdot 3 = 15$ x=3 3 + 6 = 15 9 = 15
Check Does 9	9=15? No! This is not a solution of the equation.
Example 2:	
	12 < 4x - 5 x=7
Input the value Simplify Check Is 12<	$12 < 4 \cdot 7 - 5$ x=7 12 < 28 - 5 12 < 23 (23) Yes! This is a solution of the inequality.

<u>Try These:</u>

a) $8 - 2x = 2 x = 3$	b) $2z + 5 > 12$ $z = 1$	
$8 - 2 \cdot 3 = 2$	$2 \cdot 1 + 5 > 12$	
8 - 6 = 2	2 + 5 > 12	
2 = 2	7 > 12	
Yes! 2=2	No! 7 is not > 12	
This is a solution of the equation.	This is not a solution of the equation.	

c) $4 < 7 - q$ $q = 3$	d) $18 > 2x - 3$ $x=4$
4 < 7 - 3	$18 > 2 \cdot 4 - 3$
4 < 4	18 > 8 - 3
No! 4 is not < 4	18 > 5
This is not a solution of the equation.	Yes! 18 is > 5
	This is a solution of the equation.

Check whether the given number is a solution: (the number given comes after the semi-colon)

a) $9 - x = 4;5$	b) $b + 5 < 15; 7$
9 - 5 = 4	7 + 5 < 15
4 = 4	12 < 15
Yes! 5 is a solution of the equation.	Yes! 7 is a solution of the equation.

Combining inequalities:

There will be two signs. Give at least one value that could be a solution of the inequality. <u>Example:</u>

A number *n* is greater than 5 and less than 13

5 < n < 13 *n* could be 10

Try These:

a) x is greater than 3 and less than 9

3 < x < 9 x could be 6

b) A number *y* is no less than 5 and no more than 13

 $5 \le y \le 13$ y could be 8

c) A number q is at least 5 and less than 17

 $5 \le q < 17$ q could be 11

Word Problems:

a) The last time you and 3 friends went to a mountain bike park, you had a coupon for \$10 off the total purchase and paid \$17 for 4 tickets. What is the regular price for the 4 tickets? What is the regular price of 1 ticket?

4x - 10 = 17 4 tickets cost \$27. 1 ticket costs \$6.75

b) A basketball player scored 351 points last year. If the player plays 18 games this year, will an average of 20 points per game be enough to beat least year's total?

351 < 18 · 20 351 < 360 Yes!

c) Tyler would like to make no less than \$610 selling coffee mugs online. If he sells 28 mugs for \$22 each, will he achieve his goal?

 $610 \le 28 \cdot 22$ $610 \le 616$ Yes!