\qquad Date: \qquad Period: \qquad Score: \qquad

Isometric Transformations: Reflections

Reflections: A transformation in which every point from a figure maps to its mirror image on the other side of a line of reflection.

The line of reflection also becomes an axis of symmetry.

In the example below, $A B C D$ was reflected through the y axis. We can use the notation: \boldsymbol{R}_{y} axis.

The y axis is the line of reflection.

Notice $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the mirror image of $A B C D$.

1. In the reflection above, compare $|A B|$ and it's image $\left|A^{\prime} B^{\prime}\right|$ by finding the lengths of each.
2. Compare the lengths of the other segments in $A B C D$ to their images in $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. You might need to use the Pythagorean theorem.
3. Is the reflection above an isometric transformation? In other words, are $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ exactly the same size and shape? Why?

Name:
Date: \qquad Period: \qquad Score: \qquad

Directions: Use patty paper, Geometry software, or any other method to reflect each figure as directed. Make sure to label your image figure correctly.

1. Reflect TACK through the y axis. R_{y} axis

T														
						A								
K	F													
							C							

3. Reflect MIC through the y axis. R_{y} axis

4. Reflect MAP through the Y axis. R_{y} axis (this one is tricky).

5. Reflect FIN through the x axis. R_{x} axis

6. Reflect TIME through the y axis. R_{y} axis

6 Reflect VAN through the x axis. R_{x} axis | | | | | | | | and | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | V | | | | | | | | | |
| | | | | | | | | | | | | A | |
| | | | | | | | | | | | | | |

Name: \qquad Date: \qquad Period: \qquad Score: \qquad

Directions: Refer to some of the problems on the previous page to help you make conjectures about the functions of rotations about the origin.
7. Reflect $A B C$ through the x axis.

a. What are the coordinates of the vertices of the original figure?

A (___ \quad)
B(\qquad , \qquad $\mathrm{C}($ \qquad)
b. What What are the coordinates of the vertices of $A^{\prime} B^{\prime} C^{\prime}$?
A^{\prime} (\qquad , \qquad) $B^{\prime}($ \qquad , \qquad) $C^{\prime}($ \qquad , \qquad
c. Explain in writing how the coordinates of $A B C$ have been changed to create $A^{\prime} B^{\prime} C^{\prime}$ in this reflection through the x axis.
d. Write a function that describes a reflection through the x axis.

8. Reflect QRS through the y axis.

a. What are the coordinates of the vertices of the original figure?

Q(\qquad , \qquad) \qquad
\qquad , \qquad) S(\qquad
\qquad
b. What What are the coordinates of the vertices of $\mathrm{Q}^{\prime} \mathrm{R}^{\prime} \mathrm{S}^{\prime}$?
$Q^{\prime}($ \qquad , \qquad) $R^{\prime}($ \qquad ,) $S^{\prime}($ \qquad , \qquad
c. Explain in writing how the coordinates of QRS have been changed to create $Q^{\prime} R^{\prime} S^{\prime}$ in this reflection through the x axis.
d. Write a function that describes a reflection through the x axis.

Name: Date: \qquad Period: \qquad Score: \qquad

Directions: You can also reflect figures through lines other than the x and y axis. For these, use patty paper, geometry software, or any other method you choose to perform each reflection.

3. Reflect NAP through line j. R_{j}

5. Reflect WXYZ through line e. R_{e}

2. Reflect MNOP through line q. R_{q}

4. Reflect DOT through line k. R_{k}

6 Reflect ABC through line f. R_{f}

Name: Date: \qquad Period: \qquad

Directions: In each problem, a figure and it's image are shown. Draw the line of reflection that will map the original onto it's reflected image.

Name: \qquad Date: \qquad Period: \qquad Score: \qquad
Directions: Answer each question.

7a. Draw the line of reflection that maps $A B C$ to its image $A^{\prime} B^{\prime} C^{\prime}$. Label the line R.

b. Draw arrows from each point in $A B C$ to that points image.
c. What is $\left|A A^{\prime}\right|,\left|B B^{\prime}\right|$ and $\left|C C^{\prime}\right|$
$\left|A A^{\prime}\right|=$ \qquad $\left|B^{\prime}\right|=$ \qquad
$\left|C C^{\prime}\right|=$ \qquad
d. What is the length along $\overline{\mathrm{AA}^{\prime}}$ to the line of reflection? Is it the same length on both sides?
e. Repeat question d for $\overline{\mathrm{BB}^{\prime}}$ and $\overline{\mathrm{CC}}$.
f. This means that the line of reflection
\qquad $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$.
g. What appears to be the angle where $\overline{\mathrm{AA}}, \overline{\mathrm{BB}}$, , and CC intersect line R.

This means that the line of reflection is the ___ of $\overline{\mathrm{AA}^{\prime}}$, $\overline{\mathrm{BB}}$, , and $\overline{\mathrm{CC}}$.

Hilda says that this is true of any line of reflection. Quinn says that it isn't always true. Which one do you think is correct. Explain your answer.

